Slope Stability Assessment

Proposed Residential Development Vacant Property Building Supply Road Burnstown, Ontario

Prepared For

KDSA Development Corporation

March 3, 2017

Report: PG3155-LET.05

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

Consulting Engineers

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

> Geotechnical Engineering Environmental Engineering Archaeological Studies Hydrogeology Geological Engineering Materials Testing Building Science Archaeological Services

www.patersongroup.ca

March 3, 2017 File: PG3155-LET.05

KDSA Development Corporation

Subject: Slope Stability Assessment Proposed Residential Development Vacant Property - Building Supply Road - Burnstown

Further to your request and authorization, Paterson Group (Paterson) conducted a slope stability assessment for the proposed residential development to be located within the vacant property at the end of Building Supply Road, in Lot 17, Concession 2 - Township of McNab/Braeside, in the County of Renfrew.

The following revised geotechnical investigation and slope stability report includes the comments and clarification requirements discussed with the Township of McNab/ Braeside on December 1st, 2016.

1.0 Introduction

A slope stability analysis was completed along the north limits of the subject site to determine the geotechnical stable slope allowance. The following report presents our findings and recommendations.

Detailed design of the proposed residential development have not been finalized at this time. However, based on the drawings submitted as part of the draft plan submission dated July 6, 2016 prepared by Jp2g Consultants Inc., the site will be subdivided for residential lots with a primary access road along the south side of the site with associated access lanes, driveways and landscaped areas. Page 2 File: PG3155-LET.05

2.0 Field Investigation

The field portion of the current slope stability assessment was completed on May 19 and 20, 2016 and consisted of extending a total of 12 test pits within the east portion of the subject site to a maximum depth of 5.5 m below existing ground surface. The field portion of the previous slope stability assessment was carried out on May 6, 14 and 15, 2014 and consisted of 2 boreholes drilled using a track mounted drill rig extending to a maximum depth of 15.1 m within the west portion of the subject site. Relevant test holes completed as part of our previous Hydrogeological Study have been attached to the current report for reference purposes only. All fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer from the geotechnical division.

The location and ground surface elevation at each test hole location were surveyed by Adam Kasprzak Surveying Limited. It is our understanding that the elevations are referenced to a geodetic datum. The location and ground surface elevation at each test hole location are presented on Drawing PG3155-2 - Revision 3 - Test Hole Location Plan attached to this report.

3.0 Field Observations

The subject site occupies approximately 1.3 km of the south shore of the Madawaska River located at the end of Building Supply Road. The site is currently a vacant treed property which slopes down towards the north of the subject site. Based on the topographic mapping prepared by Adam Kasprzak Surveying Limited, the ground surface varies up to 48 m in elevation across the subject site. Bedrock outcrop was observed at several locations across the top of the slope during our cursory review during our field investigations and on December 23, 2013 and on May 6, 2014. Three shallow drainage erosional channels were observed along the 1.3 km stretch of slope bordering the Madawaska River exposing gravel, cobbles and boulders at the base of the shallow channels.

The subsurface profile encountered at the test hole locations completed during the current field investigation within the east portion of the subject site consists of a thin layer of topsoil overlying a silty sand with gravel and/or glacial till overlying bedrock with the exception of TP21-16 and TP25-16. TP21-16 and TP25-16 was terminated in a compact to dense glacial till at a depth of 5.5 and 5.1 m, respectively. It should be noted that up to 2 m of fill was observed at TP23-16 and TP24-16 which mainly consisted of cobbles, boulders and bedrock fragments with some sand and topsoil. It is suspected that the fill material encountered at the two test holes located at the toe of the slope were the result of loose boulders and bedrock fragments that had fallen from the slope face from the repeated freeze-thaw cycles.

Page 3 File: PG3155-LET.05

The subsurface profile encountered at the borehole locations within the west portion of the subject site consists of a thin topsoil and organic layer overlying a loose to dense sandy silt to silty sand with trace clay and gravel which inturn, is overlying a dense glacial till consisting of a sandy silt with gravel, cobbles, boulders trace clay. Bedrock was encountered below the glacial till at a depth of 1.3 and 12.3 m at BH 2 and BH 1, respectively.

Reference should be made to the Soil Profile and Test Data sheets attached to the present report for specific details of the soil profile encountered at the borehole locations.

4.0 Geotechnical Stable Slope Allowances

Slope Conditions

A geotechnical stable slope setback line has been provided along the 1.3 km shoreline of the subject site that borders the south side of the Madawaska River. Three slope cross-sections (Section A, B and C) were studied as the worst case scenarios during our primary investigation using topographic mapping prepared by Douglas W. Patterson Limited and based on the two (2) test holes completed within the west portion of the site. Three (3) additional slope cross-sections (Section D, E and F) were studied at the worst case scenarios. Section C was revised using the topographic mapping prepared by Adam Kasprzak Surveying Limited and recent subsoil information recovered during the current field investigation on May 19 and 20, 2016.

The inferred subsoil profiles within the central and east portion of the subject site were conservatively based on general knowledge of the subject area. The cross section locations are presented on Drawing PG3155-2 - Revision 3 - Test Hole Location Plan in Appendix 2.

Based on the topographic mapping prepared by Adam Kasprzak Surveying Limited, elevations across the subject site varied up to 48 m in height. A near vertical bedrock face which extends approximately 25 m above the Madawaska River was observed approximately 280 to 360 m east of the west limits of the subject site.

Bedrock outcrop was observed along the west and central portion of the subject slope with the exception of the area within the vicinity of Section A where an approximate 200 m wide slip failure was observed at the base of the subject slope. The remainder of the slope face and the subject site is occupied by adolescent to mature coniferous and deciduous trees. Some erosional features from the three shallow drainage swales along the slope face and minor signs of active erosion were noted along the toe of the slope along the waters edge.

Page 4 File: PG3155-LET.05

The east portion of the subject site at the location of Section C is occupied by an approximate 22 m high slope which is set back approximately 40 to 50 m from the controlled water mark along the north side of the site. Based on the topographic mapping prepared by Adam Kasprzak Surveying Limited, the existing slope at Slope Cross-Section C varies between 1.5H:1V to 2H:1V before levelling off to slopes of less than 3H:1V.

Slope Stability Analysis

The analysis of the stability of the slope was carried out using SLIDE, a computer program which permits a two-dimensional slope stability analysis using several methods including the Bishop's method, which is a widely used and accepted analysis method. The program calculates a factor of safety, which represents the ratio of the forces resisting failure to those favoring failure. Theoretically, a factor of safety of 1 represents a condition where the slope is stable. However, due to intrinsic limitations of the calculation methods and the variability of the subsoil and groundwater conditions, a factor of safety greater than 1 is usually required to ascertain the risks of failure are acceptable. A minimum factor of safety of 1.5 is generally recommended for conditions where the failure of the slope would affect settlement sensitive structures such as residential dwellings, garages, storage structures, pools and decks.

The cross-sections were analyzed taking into account groundwater at a conservative depth of 3 m below existing ground surface for the subject slope based on the groundwater conditions observed within the open test holes completed during the supplemental geotechnical investigation and test wells installed during the hydrogeological study. Subsoil conditions at the cross-sections were inferred based on the findings at the 2 boreholes within the west portion of the subject slope and 12 test pits completed within the east portion of the site and general knowledge of the area's geology. The slope cross-sections were based on the topographic information prepared by Adam Kasprzak Surveying Limited.

Static Analysis

The results for the slope conditions at Sections A, B, C, D, E and F are shown in Figures 2a, 3a, 4a, 5a, 6a and 7a attached to the present report. The factor of safety under static conditions was found to be less than 1.5 for all sections analysed with the exceptions of Section D, E and F which are slightly greater than the 1.5 factor of safety.

The factor of safety under static conditions was found to be less than 1.0 for Section A and therefore are considered unstable from a geotechnical perspective. Due to the current slip failures noted along the slope face within the area of Section A, subsequent slip failures are anticipated within the geotechnical set back limits which are illustrated in Figure 2a.

The geotechnical stable slope allowance required for the subject slopes with a minimum factor of safety of 1.5 is identified for each profile in the attached figures.

Page 5 File: PG3155-LET.05

Seismic Loading Analysis

An analysis considering seismic loading was also completed. A horizontal seismic acceleration, K_h , of 0.38 g was considered for the analyzed sections. A factor of safety of 1.1 is considered to be satisfactory for stability analyses including seismic loading.

The results of the analyses including seismic loading are shown in Figures 2b, 3b, 4b, 5b, 6b and 7b for the slope sections. Based on these results, the slope cross-sections analysed are less than the recommended factor of safety of 1.1 with the exception of Section D, E and F which are slightly greater that the 1.1 factor of safety.

Geotechnical Stable Slope Allowance

The geotechnical stable slope allowance line defines the geotechnical setback where development is restricted. The geotechnical stable slope allowance includes the stable slope allowance based on our slope stability analysis, as well as a 6 m erosion access allowance and a 4 m toe erosion allowance. The toe erosion allowance for the valley corridor at the toe of the slope was based on the cohesive nature and density of the soils, the observed current erosional activities and the width and location of the current watercourse. Minor signs of erosion were noted along the Madawaska River especially where the watercourse meets the toe of the corridor wall. It is considered that a toe erosion allowance of 4 m is appropriate for the valley corridor walls.

The geotechnical stable slope allowance based on the results of the analysis vary between 42 and 68 m from the controlled water mark of 145.0 m at Slope Cross Section B and Slope Cross Section A, respectively. There is also an Ontario Hydro flood limit of 146.3 m which is included in the sections.

A review of Section C was competed based on the subsoil information recovered during our field investigation on May 19 and 20, 2016 and topographic mapping prepared by Adam Kasprzak Surveying Limited. An approximate 55 m wide section of the slope was determined to be less than the minimum recommended factor of safety of 1.5 for stable slope allowance of the approximately 22 m high slope located 40 to 50 m from the controlled water mark. The 55 m wide section of slope is located inland approximately 45 m from the controlled water mark and extends up to 100 m to the top of the 1.5H:1V to 2H:1V slope.

Page 6 File: PG3155-LET.05

The geotechnical stable slope allowance was based on conservative bedrock elevations due to the limited subsoil information within the subject slope. Based on our analysis results, a blended geotechnical stable slope allowance considering the erosion access and toe erosion allowance for the proposed development is indicated on Drawing PG3155-2 - Revision 3 - Test Hole Location Plan attached to this report.

Maintaining Vegetation along the Slope Face

It has been well documented in literature that vegetation including grass and small shrubs minimize surficial erosion along the slope face by producing a thin root mass overlying the slope face. It has been further documented that large deep rooted trees along a slope face can assist in the overall stability of the slope.

With that said, it is recommended that the existing root system be maintained by encouraging the overall health of the existing trees and to promote new growth for the future stability of the existing slope. The removal of dead trees is considered acceptable from a geotechnical perspective provided that the existing root system remains in place. It is strongly encouraged that the dead trees be replaced with a fast growing, deep rooted trees to replace the decaying root system from the former tree to maintain the stability of the slope.

It is also understood that responsible trimming and removal of isolated trees may encourage the health of neighbouring trees and subsequently improving the underlying root system. However, trimming and removal of trees should be reviewed by an arborist to ensure that the overall health of the existing trees and associated root systems is maintained.

Trimming and the removal of live trees is considered acceptable from a geotechnical perspective in areas where the root system does not aid in the overall stability of the slope, specifically in areas where shallow bedrock not exceeding 2 m in depth exists. Subsoil information recovered during the supplemental geotechnical investigations completed at each lot can evaluate the depth of bedrock at the test hole locations.

Water Access

Access to the water's edge via access trails, pedestrian pathway, staircase and other structures along the slope can be accommodated at each lot pending a site specific geotechnical review. In areas where the factor of safety of sections of the slope is found to less than 1.0, a slope stabilization program by the geotechnical consultant will be required to assess and mitigate issues associated with the proposed water access feature or structure.

Page 7 File: PG3155-LET.05

The slope stabilization programs is generally site specific and are dependant on site features and water access structure being considered. These slope stabilization programs may consist of slightly re-shaping and reinforcing the slope which could consist of rip-rap, Scour Stop, GeoWeb, Terramesh, Geogrid and/or Geotextile membranes.

5.0 Recommendations

The following recommendations are provided:

- The geotechnical stable slope allowance including the erosion access and toe erosion allowance are presented on Drawing PG3155-2 - Revision 3 - Test Hole Location Plan illustrates the construction limit for residential dwellings, garages, storage structures, pools and decks.
- The existing root system within the slope section should be maintained by encouraging the overall health of the existing trees and promote new growth for future stability of the existing slope. The removal of dead treas is considered acceptable from a geotechnical perspective provided that the existing root remains in place. It is strongly encouraged that dead trees be replaced with fast growing, deep rooted trees to replace the decaying root system from the former tree to maintain the stability of the slope. Responsible trimming and removal of isolated trees may be used to encourage the health of the neighbouring trees and subsequently improve the underlying root system. However, trimming and removal of trees should be reviewed by an arborist to ensure that the overall health of the existing trees and associated roots systems is maintained. Trimming and the removal of live trees is considered acceptable from a geotechnical perspective in areas where the root system does not aid in the overall stability of the slope, specifically in areas where shallow bedrock not exceeding 2 m in depth exists. Subsoil information recovered during the supplemental geotechnical investigations completed at each lot can evaluate the depth of bedrock at the test hole locations.
- Any future development along existing slope(s) should be graded to manage surface erosion along the slope face. A vegetative cover such as a thin layer of topsoil and seeded with a hardy grass seed can also be considered to lessen surficial erosion. Along with the surface grading, water from eave troughs and filter backwash from pools (if applicable) should be directed to shallow swales, storm sewers, flow speaders or drainage trenches to mitigate surficial erosion along the slope face within the geotechnical slope stability allowance. Where swales and ditches are sloped in excess of 5H:1V, it is recommended that the base of the ditch be lined with a geotextile separation layer such as a Terrafix 270R or equivalent and capped with a minimum 300 mm thick layer of clear 100 to 200 mm rip-rap to dissipate flow energy and to lessen surficial erosion.

- During the design phase of the single family residential dwellings, a review of the proposed final grading plan is required to assess the influence of the expected loading on the slope stability. Considerations such as incorporating a basement level and/or a walk-out basement along with below grade drainage will lessen the loading on the slope and improve long term stability.
- □ Based on the anticipated development, no restriction is expected for reasonable grade raises at the subject site. The permissible grade raise can be reviewed by the geotechnical consultant on a lot by lot basis along with the final grading plans to determine any impacts on the overall stability of the existing slope.
- □ From a geotechnical perspective, during the design phase of the proposed residential development including side slopes along the primary access road and and access lanes, grading should be shaped to a maximum slope of 3H:1V which is considered stable over the long term.
- A supplemental geotechnical investigation is required by a lot by lot basis to confirm the subsoil conditions inferred during our slope stability analysis. The subsoil, bedrock and groundwater conditions inferred during our slope stability investigation can be confirmed by excavating test pits and/or drilling boreholes at strategic locations across the subject section of the slope.

6.0 General Conditions

Detailed information regarding the proposed development within the individual lots are not known at the time of issuance of the current report. As a result, general site conditions for the individual lots are dependent on the proximity of the proposed settlement sensitive structure to the geotechnical stable slope allowance and have been presented in zones as illustrated on Drawing PG3155-2 - Revision 3 - Test Hole Location Plan.

Zone 1 (Brown Area)

The area identified as Zone 1 is located within the geotechnical stable slope allowance where the placement of structures are not permitted. Access to the water's edge via access trails, pedestrian pathway, staircase and other structures related to access along the slope can be accommodated for each lot pending a site specific geotechnical review. Furthermore, any approved drainage works at specific locations will require a geotechnical review.

The Geotechnical Stable Slope Allowance will be placed in a restrictive Environmental Protection Zone with a holding provision (EP-h), whereby lifting the "h" to permit development in the zone will require a lot specific geotechnical assessment for the proposed slope access works.

Zone 2 (Yellow Area)

The area identified as Zone 2 is located directly to the south of the geotechnical stable slope allowance where the following conditions must be met for the installation of structures such as dwellings, garages, outbuildings, pools and staircases located within the subject zone:

- □ The concentrated water run-off from roof drains, patios and driveways should not be directed to the crest of the slope of the Geotechnical Stable Slope Allowance, although limited sheet flow is permitted.
- □ The installation of residential structures, swimming pools (both in-ground and above ground), tennis courts and other auxiliary structures requires additional geotechnical assessment to address grading and drainage concerns towards the Geotechnical Stable Slope Allowance.
- □ The extent of fill placement above permissible grading requirements within Zone 2, requires a geotechnical review and assessment.
- □ The Geotechnical Stable Slope Allowance will be placed in a restrictive Environmental Protection Zone with a holding provision (EP-h), whereby lifting the "h" to permit development in the zone will require a lot specific geotechnical assessment for the proposed works.
- □ The recommendations and slope stabilization requirements presented in this report, will be provided to prospective lot owners as a guide for the development of the lot.

Zone 3 (Green Area)

The area identified as Zone 3 is located in an area where the geotechnical conditions are in compliance with the Geotechnical Stable Slope Allowance and with no geotechnical conditions. Any structures considered for this area are acceptable provided a reasonable design is implemented in general accordance with geotechnical recommendations provided in the previous sections of this report.

Page 10 File: PG3155-LET.05

7.0 Statement of Limitations

The recommendations made in this report are in accordance with our present understanding of the project. Our recommendations should be reviewed when the project drawings and specifications are complete.

A geotechnical investigation is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test locations or inferred during our slope stability analysis, we request that we be notified immediately in order to permit reassessment of our recommendations.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein, or by person(s) other KDSA Development Corporation or their agents, without review by this firm for the applicability of our recommendations to the altered use of the report.

We trust that this information satisfies your requirements.

Best Regards,

Paterson Group Inc.

Richard Groniger, C. Tech.

Attachments

- Soil Profile and Test Data sheets
- Photographs
- Figure 1 Key Plan
- Gine Figure 2a, 2b, 3a, 3b, 4a, 4b, 5a, 5b, 6a, 6b, 7a and 7b Slope Cross Sections
- Drawing PG3155-3 Revision 3 Test Hole Location Plan

Report Distribution

- L KDSA Developments Corporation (3 copies)
- Paterson Group (1 copy)

Carlos P. Da Silva, P.Eng.

SOIL PROFILE AND TEST DATA patersongroup Geotechnical Investigation - Proposed Roadway **Residential Development - Building Supply Road** 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Burnstown, Ontario Ground surface elevations at borehole locations provided by Adam Kasprzak FILE NO. DATUM Surveying Limited. PG3155 REMARKS HOLE NO. TP 1-16 BORINGS BY Excavator DATE May 19, 2016 гот SAMPLE Pen. Resist. Blows/0.3m DEPTH ELEV. SOIL DESCRIPTION 50 mm Dia Cone

_

SOIL DESCRIPTION	ЪГ			к		(m)	(m)	•	50 m	m Dia. Cone	tion
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE of RQD			0 20		r Content % 60 80	Piezometer Construction
FILL: Loose, brown silty sand, some cobbles and boulders		G	1				-191.19				-
1.20 1.50		_ G	2								
						2-	-189.19				
GLACIAL TILL: Compact to dense, brown silty sand, some gravel and cobbles		_ G	3				-188.19				-
4.20 End of Test Pit		-				4-	-187.19				
TP terminated in glacial till at 4.20m depth (TP dry upon completion)								20			00
								S ▲ Un	disturbed	rength (kPa) d	

Soil PROFILE AND TEST DATA Soil PROFILE AND TEST DATA Geotechnical Investigation - Proposed Roadway Residential Development - Building Supply Road Burnstown, Ontario Cound surface elevations at borehole locations provided by Adam Kasprzak

Surveying Limited.						,	iani nasp			PG3155	
REMARKS BORINGS BY Excavator	DATE May 19, 2016 HOLE NO. TP 2-16 Hole NO. Fen. Resist. Blows/0.3m Blows/0.3m <td></td>										
	н		SAN					Pen. R	esist. I	Blows/0.3m	
SOIL DESCRIPTION	A PLOT				Що	DEPTH (m)	ELEV. (m)			Dia. Cone	ster ction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r rod			• •	later C	ontent %	Piezometer Construction
GROUND SURFACE	Ω		z	RE	N O L O	0-	-188.90	20	40	60 80	i Si
Compact, brown SILTY SAND, some gravel and cobbles) 	_ G	1				100.00				
							-187.90				
GLACIAL TILL: Dense to very dense, brown silty sand, some gravel and cobbles, trace boulders		G	2				-186.90 -185.90				
4.00) ^^^^^ <u>/</u> 					4-	-184.90				
TP terminated in glacial till at 4.00m depth											
(TP dry upon completion)								20 Shea	40 Ir Strer	60 80 1 ngth (kPa)	00

Date Soil PROFILE AND TEST DATA 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Geotechnical Investigation - Proposed Roadway Residential Development - Building Supply Road Burnstown, Ontario DATUM Ground surface elevations at borehole locations provided by Adam Kasprzak File NO.

Surveying Limited.	Juibe		0 1000		provid					PG3155	
REMARKS				_			040		HOLE N	^{o.} TP 3-16	
BORINGS BY Excavator					ATE	May 19, 2	2016				
SOIL DESCRIPTION	PLOT			MPLE		DEPTH (m)	ELEV. (m)			lows/0.3m a. Cone	ter tion
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• v	later Co	ntent %	Piezometer Construction
GROUND SURFACE	ß			RE	zÖ	0-	101 22	20	40	60 80	S Pie
GROUND SURFACE TOPSOIL 0.10 Loose to compact, brown SILTY SAND, trace to some gravel, some boulders 2.00 End of Test Pit TP terminated on bedrock surface at 2.00m depth (GWL @ 2.0m depth)		_ G	2			1-	-181.23		40	60 80	
								20 Shea ▲ Undist	r Streng	60 80 1 j th (kPa) ∆ Remoulded	00

SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation - Proposed Roadway Residential Development - Building Supply Road** 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Burnstown, Ontario ak Т 0 urfo otio at he obolo lo otic idad by Ada

Surveying Limited.	albu	nenoi	e loca	ations	provic	ied by Ac	iam kasp	orzak	FILE N	PG3155	
REMARKS BORINGS BY Excavator	DATE May 19, 2016 HOLE NO. TP 4-16										
	H		SAN					Pen. R	esist.	Blows/0.3m	
SOIL DESCRIPTION	A PLOT		~	Х	Шо	DEPTH (m)	ELEV. (m)	• 5	0 mm [Dia. Cone	ter
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD			ο γ	Vater C	ontent %	Piezometer Construction
GROUND SURFACE	<u>ي</u>		N	REC	N N OL	0-	-179.62	20	40	60 80	Cor Cor
TOPSOIL		G	1				110102				
<u>0.40</u>		_ _ G	2								
											-
						1-	178.62				⊥⊻
Loose to compact, brown SILTY											
SAND, trace some gravel and cobbles, trace boulders		G	3								
						2-	177.62				
<u>3.00</u>						3-	176.62				
End of Test Pit							110.02				
TP terminated in silty sand at 3.00m depth											
(GWL @ 1.2m depth)											
								20	40	60 80 1	00
								Shea ▲ Undist	ar Strer urbed	n gth (kPa) △ Remoulded	

SOIL PROFILE AND TEST DATA

▲ Undisturbed

△ Remoulded

Geotechnical Investigation - Proposed Roadway

Residential Development - Building Supply Road 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Burnstown, Ontario Ground surface elevations at borehole locations provided by Adam Kasprzak FILE NO. DATUM Surveying Limited. PG3155 REMARKS HOLE NO. TP 5-16 BORINGS BY Excavator DATE May 19, 2016 SAMPLE Pen. Resist. Blows/0.3m PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION • 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD STRATA NUMBER TYPE 0/0 \bigcirc Water Content % **GROUND SURFACE** 80 20 40 60 0+175.96TOPSOIL G 1 0.40 Loose, dark brown SILTY SAND, some cobbles and boulders G 2 0.90 1+174.96 GLACIAL TILL: Dense, brown silty 2+173.96 sand, some gravel and cobbles G 3 ₽ 3+172.96 3.20 End of Test Pit TP terminated in glacial till at 3.20m depth (GWL @ 2.5m depth) 20 40 60 80 100 Shear Strength (kPa)

SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation - Proposed Roadway Residential Development - Building Supply Road** 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Burnstown, Ontario Ground surface elevations at borehole locations provided by Adam Kasprzak FILE NO. DATUM PG3155 Surveying Limited. REMARKS HOLE NO. TP 6-16 BORINGS BY Excavator DATE May 19, 2016 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION • 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE o/o \bigcirc Water Content % **GROUND SURFACE** 80 20 40 60 0+173.66 PEAT 0.30 G 1 ₽ 1+172.66 2 G Compact, brown SILT, some sand 2+171.66 2.40 G 3 Compact, brown SILTY SAND, some gravel, cobbles and boulders 2.80 End of Test Pit TP terminated in silty sand at 2.80m depth (GWL @ 0.3m depth)

20

▲ Undisturbed

40

Shear Strength (kPa)

60

80

△ Remoulded

100

						SOII	PRO		יד חו	EST DATA		
	DATUM Ground surface elevations at borehole location									ed Roadway Supply Road		
Surveying Limited.	at bo	orehol	e loca	itions p	orovio	led by Ad	lam Kası	orzak	FILE N	^{ю.} PG3155	;	
REMARKS BORINGS BY Excavator				D	ATE	TE May 19, 2016						
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH ELEV.			esist. 0 mm l	, u		
	STRATA F	ТҮРЕ	NUMBER	% RECOVERY	VALUE or RQD	(m)	(m)		• Water Content %			
GROUND SURFACE	01		4	RI	z ^o	0-	-173.51	20	40	60 80	Piezometer Construction	
Loose to compact, brown SILTY		G	1				-172.51					
SAND, trace gravel and cobbles												

Loose to compact, brown SILTY SAND, trace gravel and cobbles		2				
- - - - - - - - - - - - - - - - - - -			2-171.51			
GLACIAL TILL: Dense, brown silty sand, some gravel, cobbles and boulders	,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3	3-170.51			
End of Test Pit	<u>^^^^</u>					
TP terminated in glacial till at 3.20m depth						
(GWL @ 1.5m depth)						
				20 She ▲ Undis	ar Streng	50 80 10 I th (kPa) Remoulded

Datum Ground surface elevations at borehole locations provided by Adam Kasprzak Soil PROFILE AND TEST DATA Soil PROFILE AND TEST DATA Geotechnical Investigation - Proposed Roadway Residential Development - Building Supply Road Burnstown, Ontario

Surveying Limited.					provic		iann Nasp	JIZAK		^{0.} PG3155	
REMARKS	DATE May 19, 2016 TP 8-16										
BORINGS BY Excavator				D	ATE	May 19, 2	2016			15 0-10	1
SOIL DESCRIPTION	ргот		SAN	IPLE		DEPTH (m)	ELEV. (m)			Blows/0.3m Dia. Cone	er on
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(11)	(11)	- • •	later C	ontent %	Piezometer Construction
GROUND SURFACE	S.T.	H	БN	REC	N OF		170.00	20	40	60 80	Piez
Loose to compact, brown SILTY SAND, some gravel and cobbles 0.70		G	1			0-	-172.80				
		~				1-	-171.80				
GLACIAL TILL: Compact to very dense, brown silty sand, some gravel, cobbles and boulders		⊑ G	2			2-	-170.80				- ⊻
						3-	-169.80				
3.90		-									
TP terminated in glacial till at 3.90m depth											
(GWL @ 2.0m depth)								20	40	60 80 1	00
								Shea	ar Strer	60 80 1 19th (kPa) △ Remoulded	00

DatesSoil PROFILE AND TEST DATA154 Colonnade Road South, Ottawa, Ontario K2E 7J5Geotechnical Investigation - Proposed Roadway
Residential Development - Building Supply Road
Burnstown, Ontario

						irnstown					
DATUM Ground surface elevations Surveying Limited. REMARKS	at bo	orehol	e loca	ations	provic	led by Ad	lam Kasp	orzak	FILE NO.	PG3155	
BORINGS BY Excavator				D	ATE	May 19, 2	2016		HOLE NO	^{D.} TP 9-16	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)		esist. Bl 0 mm Dia	ows/0.3m a. Cone	er on
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r rod	(11)	(11)	• v	later Cor	ntent %	Piezometer Construction
GROUND SURFACE	LS	н	NN	REC	N OF	0-	-165.93	20	40 6	60 80	Piez Cor
Compact, dark brown SILTY SAND, some gravel and cobbles		_ G	1				100.00				
0.70						1-	-164.93				Ţ
GLACIAL TILL: Dense to very dense, brown silty sand with gravel, trace cobbles and boulders						2-	-163.93				
- grey by 3.0m depth 3.30 End of Test Pit		G	2			3-	-162.93				
TP terminated in glacial till at 3.30m depth (GWL @ 0.9m depth)											
								20 Shea ▲ Undist	ar Streng		00

SOIL PROFILE AND TEST DATA

Geotechnical Investigation - Proposed Roadway Residential Development - Building Supply Road Burnstown, Ontario

154 Colonnade Road South, Ottawa, On	ario P	(2E 7J	5		Burnstown, Ontario					
DATUM Ground surface elevations Surveying Limited. REMARKS	at bo	orehol	e loca	tions	provic	led by Ad	lam Kasp	orzak	FILE NO. PG3155	
BORINGS BY Excavator				D	ATE [May 19, 2	2016		HOLE NO. TP10-16	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.		esist. Blows/0.3m 0 mm Dia. Cone	'n
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	0 V	Vater Content %	Piezometer Construction
GROUND SURFACE				8	Z ~	0-	165.69	20	40 60 80	ΞŪ
TOPSOIL Loose to compact, dark brown		G	1							¥
SILTY SAND, trace gravel		G	2				404.00			
						1-	-164.69			
Very dense, brown SILTY SAND with gravel, some cobbles and boulders		G	3					· · · · · · · · · · · · · · · · · · ·		
2.40						2-	-163.69			
End of Test Pit										
TP terminated on possible bedrock surface at 2.40m depth										
(Groundwater infiltration at 0.5m depth)										
									40 60 80 10 ar Strength (kPa) urbed △ Remoulded)0

patersongroup Consulting Geoter

SOIL PROFILE AND TEST DATA

Geotechnical Investigation - Proposed Roadway Residential Development - Building Supply Road Burnstown, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

· · ·					В	imstown	, Ontario)			
DATUM Ground surface elevations Surveying Limited.	at bo	orehol	e loca	ations	provic	led by Ac	lam Kasp	orzak	FILE NO	D. PG3155	
REMARKS BORINGS BY Excavator						Mov 10. 1	016		HOLE	ю. ТР11-16	
BORINGS BY EXCAVALUI						May 19, 2					
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)			llows/0.3m ia. Cone	er tion
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE K RQD			• v	/ater Co	ontent %	Piezometer Construction
GROUND SURFACE	Ω Ω		z	RE	N O H O		400 77	20	40	60 80	C Bi
TOPSOIL 0.30		G	1				-169.77				
Loose, dark brown SILTY SAND, some gravel and cobbles		_ G	2			1-	-168.77				
GLACIAL TILL: Very dense, brown silty sand with gravel, cobbles and boulders						2-	- 167.77				
End of Test Pit TP terminated in glacial till at 3.10m		G	3			3-	-166.77				
depth (GWL @ 2.4m depth)								20 Shea	40 Ir Stren	60 80 1 gth (kPa)	00

SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation - Proposed Roadway Residential Development - Building Supply Road** 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Burnstown, Ontario Т 0 urfoo votio at ha obolo lo otic idad by Ada

DATUM Ground surface elevation: Surveying Limited.	s at b	orehol	e loca	tions	provid	led by Ac	lam Kasp	orzak	FILE	NO. PO	3155	
REMARKS BORINGS BY Excavator					ATE	Mov 10, 2	016		HOLE	^{E NO.} TP ²	12-16	
BURINGS BY EXCAVALUI						May 19, 2						
SOIL DESCRIPTION	A PLOT			NPLE	Що	DEPTH (m)	ELEV. (m)			Blows/0 Dia. Con		eter ction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD					Content		Piezometer Construction
GROUND SURFACE		G	1	8	4	0-	184.96	20	40	60	BO	<u> </u>
<u>10PSOIL</u> <u>0.2(</u>		G	2			1-	-183.96					
Loose to compact, brown SILTY SAND, some gravel, cobbles and boulders						2-	-182.96					
		_ G	3				-181.96					
4.10	<u>, </u>	 				4-	180.96					
TP terminated in silty sand at 4.10m depth (TP dry upon completion)												

40

Shear Strength (kPa) ▲ Undisturbed △ Remoulded

20

60

80

100

SOIL PROFILE AND TEST DATA

Geotechnical Investigation - Proposed Roadway Residential Development - Building Supply Road Burnstown, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ground surface elevations at borehole locations provided by Adam Kasprzak FILE NO. DATUM Surveying Limited. PG3155 REMARKS HOLE NO. **TP13-16** BORINGS BY Excavator DATE May 19, 2016 SAMPLE Pen. Resist. Blows/0.3m PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION • 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD STRATA NUMBER TYPE 0/0 \bigcirc Water Content % **GROUND SURFACE** 80 20 40 60 0+182.17TOPSOIL G 1 <u>0.3</u>0 Loose to compact, dark brown SILTY SAND, some cobbles and G 2 boulders 0.80 1+181.17 **GLACIAL TILL:** Compact to verv ₽ 2+180.17 dense, brown silty sand, some gravel, cobbles and boulders 3+179.17 3.60 G 3 End of Test Pit TP terminated on possible bedrock surface at 3.60m depth (GWL @ 2.0m depth) 40 60 80 100 20 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

Geotechnical Investigation - Proposed Roadway Residential Development - Building Supply Road Burnstown, Ontario

In the second											
Surveying Limited.	at bo	oreholo	e loca	itions	provic	led by Ad	lam Kasp	orzak	FILE NO.	PG3155	
REMARKS									HOLE NO		
BORINGS BY Excavator				D	ATE	May 19, 2	2016			[°] TP14-16	
SOIL DESCRIPTION	РГОТ		SAN	IPLE		DEPTH (m)	ELEV. (m)		esist. Blo 0 mm Dia	ows/0.3m . Cone	er on
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE OF RQD	(11)	(11)	o v	later Con	itent %	Piezometer Construction
GROUND SURFACE	ST	L	INN	REC	N V OF	0-	-178.77	20	40 6		Piez Con
TOPSOIL0.25							170.77				
Loose to dense, dark brown SILTY SAND, some boulders		G	1								
Dense to very dense, brown SILTY SAND with gravel, cobbles and boulders		⊑ G	2			1-	-177.77				
1.70		-									
End of Test Pit											
TP terminated on bedrock surface at 1.70m depth											
(TP dry upon completion)											
								20 Shea ▲ Undist	40 6 ar Strengt urbed △		00

patersongr		ır	Con	sulting		SOIL	_ PRO	FILE AI	ND TE	ST DATA	
154 Colonnade Road South, Ottawa, Ont		-		ineers	Re	ope Stab esidential urnstown	Develop	oment - Bu	iilding Su	upply Road	
DATUM Ground surface elevations Surveying Limited. REMARKS	at bo	orehol	e loca	ations p					FILE NO	PG3155	
BORINGS BY Excavator				DA	те Г	May 19, 2	2016		HOLE N	^{o.} TP15-16	
	H		SAN	IPLE				Pen. R	esist. Bl	ows/0.3m	
SOIL DESCRIPTION	PLOT			X	Ma	DEPTH (m)	ELEV. (m)	• 5	0 mm Di	a. Cone	ter tion
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r rod			• V	Vater Co	ntent %	Piezometer Construction
GROUND SURFACE	LS	H	NN	REC	N O L O		407.40	20	40	60 80	Piez Con
TOPSOIL 0.30							-167.10				
		_ G	1			1-	166.10				
Very dense, brown SILTY SAND		_ G									
with cobbles and boulders											
						2	-165.10				
						Z -	105.10				
2.80		-									
End of Test Pit											
TP terminated on bedrock surface at 2.80m depth											
(TP dry upon completion)											
								20	40	60 80 1 ⁰	00
									ar Streng		

SOIL PROFILE AND TEST DATA patersongroup **Slope Stability Investigation Residential Development - Building Supply Road** 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Burnstown, Ontario Ground surface elevations at borehole locations provided by Adam Kasprzak FILE NO. DATUM PG3155

		E.	SAMPLE	DEDTU		Pen. R	esist. Blov
BORINGS BY	/ Excavator		DATE	May 19, 2	2016		
REMARKS							HOLE NO.
DATUM	Surveying Limited.	salbu	brendle locations provid	led by Ac	iani kasp	IZAK	FILE NO.

TP16-16

	PLOT		SAN	IPLE		DEPTH	ELEV.						0.3m	
SOIL DESCRIPTION		E E	BER	JERY	LUE QD	(m)	(m)				n Dia			Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD						r Cor			iezoi
GROUND SURFACE			•••	Ř	4	0-	168.98	2	20	40	6	0	80	<u>ч</u> О
Very dense, dark brown SILTY SAND with cobbles and boulders		G	1				- 100.90							
0.90 End of Test Pit	L. H.	-												
End of Test Pit														
TP terminated on bedrock surface at 0.90m depth														
(TP dry upon completion)														
	1													
	1													
	1													
									20	40	6	0 16 /17		00
										ar St turbec	reng d 🛆		P a) oulded	

Soil PROFILE AND TEST DATA Soil PROFILE AND TEST DATA Soil Provided Road South, Ottawa, Ontario K2E 7J5 Soil Provided by Adam Kasprzak

DATUM Ground surface elevations Surveying Limited.	at bo	orehol	e loca	ations	provic	ded by Ac	lam Kasp	orzak	FILE N	D. PG3155	
REMARKS				_		May 40, 6	040		HOLE	^{NO.} TP17-16	
BORINGS BY Excavator					ATE	May 19, 2	2016				
SOIL DESCRIPTION	A PLOT			NPLE	що	DEPTH (m)	ELEV. (m)			Blows/0.3m ia. Cone	eter ction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• •	later Co	ontent %	Piezometer Construction
GROUND SURFACE			4	RE	z º	- 0-	172.58	20	40	60 80	άŬ
Very dense, dark brown SILTY SAND with boulders0.80		_ G	1								-
End of Test Pit		-									
TP terminated on bedrock surface at 0.80m depth											
(TP dry upon completion)								20	40		00
								20 Shea ▲ Undist	r Stren	gth (kPa) ∆ Remoulded	00

patersongr		Ir	Con	sulting		SOIL	- PRO	FILE AN	ND TES	ST DATA	
154 Colonnade Road South, Ottawa, On		-		ineers	Re	sidential	ility Inves Develop , Ontario	ment - Bu	ilding Su	pply Road	
DATUM Ground surface elevations Surveying Limited.	at bo	orehol	e loca	tions p	-				FILE NO.	PG3155	
REMARKS BORINGS BY Excavator					ΤΕ 	1ay 19, 2	2016		HOLE NO	TP18-16	
	ы		SAN	IPLE		nay 19, 2		Pen, R	esist. Blo	ows/0.3m	
SOIL DESCRIPTION	PLOT					DEPTH (m)	ELEV. (m)		0 mm Dia		ter tion
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• v	Vater Con	tent %	Piezometer Construction
GROUND SURFACE	LS.	н	กม	REC	, т о и	0-	-173.19	20	40 60	0 80	Pie: Cor
Very dense, dark brown SILTY SAND with cobbles and boulders 1.10		_ G	1				-172.19				
End of Test Pit		Ť									
TP terminated on bedrock surface at 1.10m depth											
(TP dry upon completion)								20 Shea	40 60 ar Strengt	0 80 1 ⁰ h (kPa)	00
								20 Shea ▲ Undist	ar Strengt	0 80 10 h (kPa) Remoulded	00

SOIL PROFILE AND TEST DATA patersongroup Slope Stability Investigation **Residential Development - Building Supply Road** 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Burnstown, Ontario Ground surface elevations at borehole locations provided by Adam Kasprzak DATUM FILE NO. Surveying Limited. PG3155 REMARKS HOLE NO. **TP19-16** BORINGS BY Excavator DATE May 19, 2016 PLOT SAMPLE Pen. Resist. Blows/0.3m DEPTH ELEV. SOIL DESCRIPTION • 50 mm Dia. Cone

ç

SOL DESCRIPTION R GROUND SURFACE Very dense, dark brown SILTY SAND with cobbles and boulders I - G 1 I - 169.37 Cmm Cm	SOIL DESCRIPTION	L PI			к	Шо	(m)	(m)	• 50 mm Dia. Cone	ter tion
Very dense, dark brown SILTY SAND with cobbles and boulders End of Test Pit TP terminated on bedrock surface at 1.90m depth (TP dry upon completion)		FRAT	ГYРЕ	JMBER	% COVER	VALU RQD			• Water Content %	zome ıstruc
Very dense, dark brown SILTY SAND with cobbles and boulders End of Test Pit TP terminated on bedrock surface at 1.90m depth (TP dry upon completion) 20 40 60 80 100 Shear Strength (KP) 100	GROUND SURFACE	<u></u>		ŭ	REC	z ^ö		170.07	20 40 60 80	Cor Pie
End of Test Pit TP terminated on bedrock surface at 1.90m depth (TP dry upon completion) (TP dry upon completion) 20 40 60 80 100 Shear Strength (NPa)			_ G	1						
1.90m depth (TP dry upon completion)	End of Test Pit	11.1	-							
20 40 60 80 100 Shear Strength (kPa)	TP terminated on bedrock surface at 1.90m depth									
20 40 60 80 100 Shear Strength (kPa)	(TP dry upon completion)									
Shear Strength (kPa)										
Shear Strength (kPa)										
Shear Strength (kPa)										
Shear Strength (kPa)										
Shear Strength (kPa)										
Shear Strength (kPa)										
Shear Strength (kPa)										
Shear Strength (kPa)										
Shear Strength (kPa)										
Shear Strength (kPa)										
Shear Strength (kPa)										
Shear Strength (kPa)										
Shear Strength (kPa)										
Shear Strength (kPa)										
Shear Strength (kPa)										
Shear Strength (kPa)										
Shear Strength (kPa)										
Shear Strength (kPa)									20 40 60 80 100)
									Shear Strength (kPa)	

SOIL PROFILE AND TEST DATA SOIL PROFILE AND TEST DATA Soluce of the stability investigation Soluce of the stability investigation Soluce of the stability investigation BORINGS BY Excavator DATE May 19, 2016 Soluce SCRIPTION Soluce SCRIPTION TOPSOIL O.15 CROUND SURFACE DEPTH ELEV. Permeters and the stability investigation Colspan="2">Point May 19, 2016 Soluce SCRIPTION Soluce SCRIPTION OPEN Stability investigation Pen Resist. Biows/0.3m COPSOIL 0.15 Core of the stability investigation Point Stability investigation Point Stability investigation OPEN Resist. Biows/0.3m Soluce Scription OPEN Resist. Biows/0.3m Core of the stability investigation OPEN Resist. Biows/0.3m Core of the stability investigation Determinated on bedrock surface at <th>nat</th> <th>ersonar</th> <th></th> <th>ır</th> <th>Con</th> <th>sulting</th> <th></th> <th>SOIL</th> <th>. PRO</th> <th>FILE AN</th> <th>ND TES</th> <th>ST DATA</th> <th></th>	nat	ersonar		ır	Con	sulting		SOIL	. PRO	FILE AN	ND TES	ST DATA	
Ground surface elevations at borehole locations provided by Adam Kasprzak Surveying Limited. PG3155 REMARKS BORINGS BY Excavator DATE May 19, 2016 PELE NO. PG3155 BORINGS BY Excavator DATE May 19, 2016 PER-Resist. Blows/0.3m PER-Resist. Blows/0.3m SOIL DESCRIPTION Image: state of the state	-	•		-		ineers	R	Residential	Develop	ment - Bu	ilding Su	pply Road	
BORINGS BY Excavator POLE No. TP20-16 BORINGS BY Excavator TP20-16 SOIL DESCRIPTION PEPTH		Ground surface elevations Surveying Limited.	at bo	orehol	e loca	itions p	_				FILE NO.	PG3155	
SOIL DESCRIPTION Image: Same set of the set of t	_	Excavator				DA	TE	May 19, 2	016		HOLE NO	TP20-16	
GROUND SURFACE MA MA <td></td> <td></td> <td>H</td> <td></td> <td>SAN</td> <td></td> <td></td> <td></td> <td></td> <td>Pen. R</td> <td>esist. Blo</td> <td>ows/0.3m</td> <td></td>			H		SAN					Pen. R	esist. Blo	ows/0.3m	
TOPSOIL 0.15 Dense to very dense, brown SILTY SAND with gravel, cobbles and boulders $= G$ 2 2.30 $= G$ 2 End of Test Pit 2.30m depth $= G$ 2	SC	DIL DESCRIPTION			~	ХХ	щ м	(m)		• 5	0 mm Dia	. Cone	stion
TOPSOIL 0.15 $0-165.59$ Dense to very dense, brown SILTY SAND with gravel, cobbles and boulders $= G$ 2 2.30 $= G$ 2 End of Test Pit 2.30m depth $= G$ 2			TRAT2	ГYPE	UMBEI	COVEI	VALU r ROI			• v	Vater Con	tent %	zome nstrue
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					E.	REC	z Ö	,	-165.59	20	40 6	0 80	C Pie
Dense to very dense, brown SILTY SAND with gravel, cobbles and boulders 2.30 3.3	TOPSOIL	0.15		_ _ G	1				100.00				
End of Test Pit TP terminated on bedrock surface at 2.30 depth	SAND with	ery dense, brown SILTY gravel, cobbles and		⊑ G	2			1-	-164.59				
2.30m depth	End of Tes			_				2-	-163.59				
(TP dry upon completion)													
20 40 60 80 100 Shear Strength (kPa)													00

DATUM Ground surface elevations at borehole locations provided by Adam Kasprzak Soll PROFILE AND TEST DATA Soll PROFILE AND TEST DATA Slope Stability Investigation Residential Development - Building Supply Road Burnstown, Ontario

Surveying Limited.										PG315)
									HOLE	^{NO.} TP21-16	
BORINGS BY Excavator				D	ATE	May 20, 2	2016			11 21-10	,
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.			Blows/0.3m Dia. Cone	- u
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE NY ROD	(m)	(m)		Vator C	ontent %	Piezometer Construction
GROUND SURFACE	STI	Ĥ	5	REC	ч л л			20	40	60 80	Piez Con:
TOPOOL						0-	156.02				
Loose, dark brown SILTY SAND, some cobbles and boulders		_ G _ G -	1 2								
						1-	-155.02				
						2-	-154.02				
GLACIAL TILL: Compact to dense, brown silty sand, some cobbles and boulders						3-	-153.02				
						4-	- 152.02				
		G	3			5-	-151.02				
5.50 End of Test Pit		-									
TP terminated in glacial till at 5.50m depth (Groundwater infiltration at 3.5m depth)											
								20 Shea ▲ Undist		60 80 ngth (kPa) △ Remoulded	100

Soll PROFILE AND TEST DATA Solution Solution 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Slope Stability Investigation Residential Development - Building Supply Road Burnstown, Ontario

DATUM Ground surface elevations Surveying Limited.	at bo	orehol	e loca	ations	provic	led by Ac	lam Kasp	orzak	FILE	NO.	PG3155	5
REMARKS BORINGS BY Excavator				п		May 20, 2	2016		HOL	e no. T	P22-16	;
	Ъ		SAN	/PLE				Pen. R	esist.	Blows	s/0.3m	
SOIL DESCRIPTION	A PLOT		ы	RY	Ħ۵	DEPTH (m)	ELEV. (m)	• 5	0 mm	Dia. C	one	eter
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• V	Vater	Conter	nt %	Piezometer Construction
GROUND SURFACE	_		4	RE	z ⁰	0-	160.58	20	40	60	80	άŏ
TOPSOIL 0.10 Loose, dark brown SILTY SAND, some cobbles 0.70		-										
						1-	-159.58					
GLACIAL TILL: Compact, brown silty sand, some cobbles and boulders												
						2-	-158.58					
3. <u>10</u> End of Test Pit		-				3-	-157.58					
TP terminated on bedrock surface at 3.10m depth												
(Groundwater infiltration at bottom of test pit)								20	40	60	80	
									ar Stre	ength (

patersongr		ır	Con	sulting		SOIL	- PRO	FILE AN	ND TES	ST DATA	
154 Colonnade Road South, Ottawa, Or		-		ineers	Res	idential			ilding Su	pply Road	
DATUM Ground surface elevation: Surveying Limited.	s at bo	orehol	e loca	ations p	-				FILE NO.	PG3155	
REMARKS									HOLE NO	[.] TP23-16	
BORINGS BY Excavator					TE M	ay 20, 2	2016				
SOIL DESCRIPTION	A PLOT			NPLE ਮੁ		DEPTH (m)	ELEV. (m)		esist. Bl 0 mm Dia	ows/0.3m a. Cone	ter tion
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• v	Vater Cor	ntent %	Piezometer Construction
GROUND SURFACE			4	RI	zv	0-	148.46	20	40 6	60 80	ΞŎ
FILL: Boulders and cobbles with sand and topsoil		G	1								
1.20	אאו					1-	-147.46				
GLACIAL TILL: Compact, brown silty sand with gravel and cobbles						2-	-146.46				
2. <u>60</u> End of Test Pit		G	2								
TP terminated on bedrock at 2.60m depth											
(Groundwater infiltration at bottom of test pit)								20			00
									ar Streng		~~

patersongr		ır	Con	sulting		SOIL	- PRO	FILE AI		ST DATA	
154 Colonnade Road South, Ottawa, On		_		ineers	Re	sidential	ility Inves Develop , Ontaric	ment - Bu	iilding Su	upply Road	
DATUM Ground surface elevations Surveying Limited. REMARKS	s at bo	orehol	e loca	ations p	rovide	ed by Ad	lam Kasp	orzak	FILE NO	PG3155	
BORINGS BY Excavator				DA	TE M	1ay 20, 2	2016		HOLE N	^{D.} TP24-16	
	Ц		SAN	/IPLE		-		Pen. R	esist. Bl	ows/0.3m	
SOIL DESCRIPTION	A PLOT		~	хх		DEPTH (m)	ELEV. (m)	• 5	0 mm Di	a. Cone	ster
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r rod			• V	Vater Co	ntent %	Piezometer Construction
GROUND SURFACE		-	E	RE	N N O L O	0-	-147.10	20	40	60 80	° ⊒i
FILL: Boulders with topsoil and sand						4	4 4 9 4 9				
		_ G	1			1-	-146.10				
<u>2.0</u> 0		-				2-	-145.10				
										· · · · · · · · · · · · · · · · · · ·	
						3-	-144.10				₽
GLACIAL TILL: Compact to very dense, brown silty sand with gravel,											
cobbles and boulders											
						4-	-143.10				
						·					
4.90		G	2								
End of Test Pit TP terminated on inferred bedrock											
surface at 4.90m depth											
(Groundwater infiltration at 3.0m depth)											
									ar Streng	th (kPa)	00
	1							▲ Undist		Remoulded	

						SOIL PROFILE AND TEST DATA						
154 Colonnade Road South, Ottawa, On	Res	Slope Stability Investigation Residential Development - Building Supply Road Burnstown, Ontario										
DATUM Ground surface elevations at borehole locations provi Surveying Limited.							-					
REMARKS	D.4*					TE May 20, 2016				HOLE NO. TP25-16		
BORINGS BY Excavator	.					iay 20, 2	010	Pen. Resist. Blows/0.3m				
SOIL DESCRIPTION	STRATA PLOT					DEPTH (m)	ELEV. (m)					
		ТҮРБ	NUMBER	% RECOVERY	N VALUE or RQD			• Water Content %			Piezometer Construction	
GROUND SURFACE					z ^o	0-	-158.13	20	0 40 60 80			
Loose to dense, dark brown SILTY SAND with cobbles and boulders		_ _ G	1			1-	-157.13					
<u>1.5</u> 0						2-	-156.13					
GLACIAL TILL: Compact to very dense, brown silty sand with gravel, cobbles and boulders						3-	-155.13				Σ	
		G	2				-154.13					
End of Test Pit TP terminated in glacial till at 5.10m depth	<u>)[^^^^/</u>					5-	-153.13					
(Groudnwater infiltration at 3.0m depth)												
					20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded							

patersongr		ır	Con	sulting		SOIL	- PRO	FILE AI	ND TES	ST DATA	
154 Colonnade Road South, Ottawa, Ont		-		ineers	Re	ope Stabi esidential urnstown	Develop	oment - Bu	uilding Su	pply Road	
DATUM Ground surface elevations Surveying Limited. REMARKS	at bo	orehol	e loca	itions pi					FILE NO.	PG3155	
BORINGS BY Excavator				DA	TF	May 20, 2	2016		HOLE NO	^{D.} TP26-16	
	H		SAN	IPLE				Pen. R	esist. Bl	ows/0.3m	
SOIL DESCRIPTION	PLOT				M	DEPTH (m)	ELEV. (m)		0 mm Dia		ter tion
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r rod			• V	Vater Cor	ntent %	Piezometer Construction
GROUND SURFACE	۲S S		NC	REC	N 0 N		-160.94	20	40 6	60 80	Cor Cor
Loose, dark brown SILTY SAND, some boulders							- 160.94				
1.20						1-	159.94				
End of Test Pit	· I. I. I.	G	1								
TP terminated on bedrock surface at 1.20m depth											
(TP dry upon completion)											
								20 Shea ▲ Undis	ar Streng		00

patersong	rn		n	Con	sulting ineers		SOI	l pro	FILE AN	ND T	EST	r da	ATA	
154 Colonnade Road South, Ottawa			-		ineers	Pr	eotechnic op. Resid urnstown	lential D	evelopme	nt - B	uildin	g Su	pply F	load
DATUM Ground surface elevation Surveying Limited. REMARKS	ns at	bore	hole lo	ocatio	ns prov			•		FILE	NO.	PG	3155	
BORINGS BY CME 45 Power Auger					D۵	TE	May 14, 20	014		HOL	e no.	BH	1	
		H		SAM	IPLE		_		Pen. R	esist.	Blov	vs/0.3	3m	_
SOIL DESCRIPTION		PLOT					DEPTH (m)	ELEV. (m)	● 5	0 mm	Dia.	Cone	9	neter
		STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or ROD			• v	Vater	Conte	ent %	6	Piezometer Construction
GROUND SURFACE			≂ ∧ I I	• •	RE	z ⁰	0-	-177.98	20	40	60	8	0 	×× ××
	<u>). IU:</u>		SSAU ⊽	1										
Loose to dense, brown SANDY SILT , trace clay and gravel	• • •		ss	2	75	4	1-	-176.98	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·				
			ss	3	83	47	2-	-175.98		· · · · · · · · · · · · · · · · · · ·				
2	2. <u>59</u>		-				2	-174.98						
			ss	4	58	36	3	-174.90					· · · · · · · · · · · · · · · · · · ·	
							4-	-173.98		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
							5-	-172.98						
							Ū	172.00						
							6-	-171.98		······································	······································		· · · · · · · · · · · · · · · · · · ·	
							7-	-170.98		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
GLACIAL TILL: Dense, brown sandy silt with gravel, cobbles and boulders, trace clay														
boulders, liace clay							8-	-169.98					· · · · · · · · · · · · · · · · · · ·	
							9-	-168.98	· () · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
							10	107.00						
			_				10-	-167.98	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
			RC	1	30		11-	-166.98		· · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	: : :	· · · · · · · · · · · · · · · · · · ·	
			_				12-	-165.98						
12	2. <u>32[^</u>		RC	2	100	42		100100						
	2 2		ΠŪ	2		42	13-	-164.98	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·	······		· · · · · · · · · · · · · · · · · · ·	
IGNEOUS BEDROCK	<u> </u>						14-	-163.98			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
47	<u>नम</u> नन		RC	3	100	42		100.00						
End of Borehole	5. <u>09</u>	2 2	-				15-	-162.98						
									20	40	60	8	0 1	00

20 40 60 80 Shear Strength (kPa) Undisturbed

△ Remoulded

patersongro	DU	D	Con	sulting					ND TEST D	ATA	
154 Colonnade Road South, Ottawa, O		-		ineers	P	eotechnic rop. Resic urnstown	dential D	evelopme	nt - Building S	Supply R	load
DATUM Ground surface elevations a Surveying Limited. REMARKS	at bore	ehole l	ocatio	ns prov	ided	by Adam	Kasprzak		FILE NO.	G3155	
BORINGS BY CME 45 Power Auger				DA	TE	May 15, 20	014		HOLE NO.	12	
	ь		SAN	IPLE				Pen. B	esist. Blows/	0.3m	
SOIL DESCRIPTION	A PLOT				빋ㅇ	DEPTH (m)	ELEV. (m)	-	0 mm Dia. Co		Piezometer Construction
	STRATA	ТУРЕ	NUMBER	° © © © © © © ©	N VALUE or ROD			• v	later Content	%	Piezo Const
GROUND SURFACE				8	zč		-169.00	20	40 60	80 : : : : : : :	× ×
ר TOPSOIL0.20 Very dense, brown SILTY SAND	<u> </u>										
1.30	$\frac{1}{1}$	ss	1		50+	1-	-168.00			· · · · · · · · · · · · · · · · · · ·	
		RC	1	98	62	2-	-167.00				
IGNEOUS BEDROCK		<u> </u>					100.00				
		RC	2	100	78	3-	-166.00				
4.34	$1 \frac{1}{1} $		2		10	4-	-165.00		·····		
End of Borehole	<u>,</u>	-									
								20 Shea ▲ Undist	40 60 ar Strength (k urbed △ Rem	Pa)	00
									urbeu 🛆 Kem	ouidea	

L

patersongro		In	Con	sulting		SOI	l pro	FILE A	ND TEST	DATA	
154 Colonnade Road South, Ottawa, Or				ineers	В	raeburn E urnstown urnstown	, Ontario)	Supply Roa	d	
DATUM Ground surface elevation int Kasprzak Surveying Ltd.	erpola	ated fr	om to	pograph	-				FILE NO.	PH2610	
REMARKS						Marah 10	2015		HOLE NO.	TP 1	
BORINGS BY Backhoe	н		SAN		TE	March 10,		Pen. R	esist. Blov		_
SOIL DESCRIPTION	PLOT				M -	DEPTH (m)	ELEV. (m)		0 mm Dia.		neter uctior
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or ROD	1		• V	Vater Conte	ent %	Piezometer Construction
GROUND SURFACE	ι. δ	•	15	REC	z ö		-187.30	20	40 60	80	ШО
TOPSOIL 0.20 Compact, reddish brown SAND-GRAVEL, some cobbles, silt and clay		G	1				107.30				
1.00						1-	- 186.30				
Compact, grey SANDY SILT , some gravel		G	2								
								20 Shea ▲ Undist	40 60 ar Strength urbed △ F	80 10 (kPa) Remoulded	00

patersongr		In	Con	sulting		SOI	l pro	FILE AN	ND TES	T DATA	
154 Colonnade Road South, Ottawa, C		-		jineers	Βι	raeburn E urnstown urnstown	, Ontaric		Supply Roa	ad	
DATUM Ground surface elevation in Kasprzak Surveying Ltd.	nterpo	lated fr	om to	pograph					FILE NO.	PH2610	
REMARKS BORINGS BY Backhoe				ПА	TE	March 10,	2015		HOLE NO.	TP 2	
	Ę		SAN					Pen. R	esist. Blo	ws/0.3m	
SOIL DESCRIPTION	PLOT			ک	ы о	DEPTH (m)	ELEV. (m)	• 5	0 mm Dia.	Cone	neter uction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• V	Vater Cont	tent %	Piezometer Construction
GROUND SURFACE	ζ.	L.	ŭ	REC	z Ö	0-	-181.50	20	40 60	80	шО
TOPSOIL 0.1	5	· · · · · · · · · · · · · · · · · · ·									
Dense, light brown SILTY SAND, some gravel and cobbles		G	3								
		· · · · · · · · · · · · · · · · · · ·				1-	- 180.50				
1.3	0	· · · · · · · · · · · · · · · · · · ·									
Dense, grey-brown SILTY SAND, some fine sand seams		G	4								
End of Test Pit (TP dry upon completion)	0	. 						20	40 60) 80 10	00
									ar Strengt		

patersongro		In	Con	sulting		SOI	l pro	FILE AN	ND TES	F DATA	
154 Colonnade Road South, Ottawa, Or		—		ineers	Βι	aeburn E Jrnstown Jrnstown	, Ontaric		Supply Roa	ad	
DATUM Ground surface elevation int Kasprzak Surveying Ltd.	erpola	ated fr	om to	pograpł					FILE NO.	PH2610	
REMARKS					1		0015		HOLE NO.	TP 3	
BORINGS BY Backhoe	_		SAM			March 10,	2015	Pen R	esist. Blov	_	
SOIL DESCRIPTION	A PLOT				۲ ۲	DEPTH (m)	ELEV. (m)		0 mm Dia.		Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• v	Vater Cont	ent %	Piezol Const
GROUND SURFACE				8	2	0-	179.00	20	40 60	80	
TOPSOIL 0.15											
0.10											
Loose, reddish brown SAND , trace silt		G	5								
<u>0.80</u>		_									
						1-	178.00				
							170.00				
Light brown FINE SAND											
		G	6								
1.70											
End of Test Pit		_									
(TP dry upon completion)											
								20 20	40 60		00
								Shea ▲ Undist	ar Strengtl urbed △	1 (KPa) Remoulded	

natersonard	Consulting Engineers B				3	SOI	l pro	SOIL PROFILE AND TEST DATA				
154 Colonnade Road South, Ottawa, Or		-		ineers	B	Braeburn E Burnstown Burnstown	, Ontario		Road			
DATUM Ground surface elevation int Kasprzak Surveying Ltd.	erpol	ated fr	om to	pograp			-		ю. PH2610			
REMARKS								HOLE				
BORINGS BY Backhoe					ATE	March 10,	2015	Der Deriet I				
SOIL DESCRIPTION	PLOT			IPLE 것	<u>ы</u>	DEPTH (m)	ELEV. (m)	Pen. Resist. I	Blows/0.3m Dia. Cone	Piezometer Construction		
	STRATA	ТҮРЕ	NUMBER	* RECOVERY	N VALUE of ROD			 Water C 	content %	Piezor Constr		
GROUND SURFACE	01		4	R	z		179.00	20 40	60 80			
TOPSOIL 0.20												
0.20												
Reddish brown SILTY FINE SAND,												
some cobbles and boulders												
<u>1.00</u>		_				1-	- 178.00					
							170.00					
Grey-brown SANDY SILT												
1.50		_										
(TP dry upon completion)												
								20 40 Shear Strei ▲ Undisturbed	60 80 10 ngth (kPa) △ Remoulded	00		

patersongro		In	Con	sulting	I	SOI	l pro	FILE AN	D TEST	DATA	
154 Colonnade Road South, Ottawa, Or				jineers	В	sraeburn E Surnstown Surnstown	, Ontario		upply Roa	d	
DATUM Ground surface elevation int Kasprzak Surveying Ltd.	erpola	ated fr	om to	pograph					FILE NO.	PH2610	
REMARKS								-	HOLE NO.	TP 5	
BORINGS BY Backhoe					TE	March 10,	2015			_	
SOIL DESCRIPTION	PLOT			IPLE		DEPTH (m)	ELEV. (m)		sist. Blow mm Dia.		Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE of ROD	1		• W	ater Conte	ent %	Piezom
GROUND SURFACE	ß		Z	RE	z ^o		174.00	20	40 60	80	
TOPSOIL		_					174.00				
Compact, reddish brown SILTY SAND, some gravel, cobbles and boulders		G	7								
<u>1.30</u>						1-	- 173.00				
Compact, grey-brown SILTY SAND, some gravel 1.80		G	8								
End of Test Pit (TP dry upon completion)								20 Sheal	40 60 r Strength		00
								Undistu		(KPa) Remoulded	

patersongr		in	Con	sulting	1	SOI	l pro	FILE AI	ND TEST	DATA	
154 Colonnade Road South, Ottawa, C		-		ineers	Bu	aeburn E Irnstown Irnstown	, Ontario)	Supply Roa	d	
DATUM Ground surface elevation in Kasprzak Surveying Ltd.	nterpol	ated fr	rom toj	pograpł					FILE NO.	PH2610	
REMARKS BORINGS BY Backhoe				DA	TE I	March 10,	2015		HOLE NO.	TP 6	
	Б		SAM	IPLE				Pen. R	esist. Blov	vs/0.3m	, <u> </u>
SOIL DESCRIPTION	A PLOT		ы	RY	۲a	DEPTH (m)	ELEV. (m)	• 5	i0 mm Dia.	Cone	meter
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• •	Vater Conte	ent %	Piezometer Construction
GROUND SURFACE	07			R	z	0-	166.50	20	40 60	80	
TOPSOIL 0.1	5										
<u>0.1</u>	<u>)</u>										
		• • •									
Compact to dense, light brown SANDY SILT, some clay		G	9								
0.7	0										Σ
											*
Loose, grey-brown coarse SAND		G	10								
1.0	•										
<u>1.0</u>						1-	-165.50				
		G	11								
Grey-brown CLAYEY SILT, some											
sand and gravel											
<u>1.7</u> End of Test Pit	o										
(Groundwater infiltration at 0.7m											
depth)											
								20 Shea	40 60 ar Strength	n (kPa)	00
								▲ Undis	turbed △ F	Remoulded	

patersongro		In	Con	sulting		SOI	l pro	FILE AN	ND TEST DATA	
154 Colonnade Road South, Ottawa, Or		-		ineers	Bu	rnstown	states - , Ontario , Ontario)	Supply Road	
DATUM Ground surface elevation int Kasprzak Surveying Ltd.	erpola	ated fr	om toj	pograph			-		FILE NO. PH2610	
REMARKS BORINGS BY Backhoe					N	March 10,	2015		HOLE NO. TP 7	
	E 1		SAM		TE N	narch 10,	2015	Pen B	esist. Blows/0.3m	
SOIL DESCRIPTION	A PLOT					DEPTH (m)	ELEV. (m)		0 mm Dia. Cone	Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• v	Vater Content %	Piezor Consti
GROUND SURFACE	03		4	RE	z	0-	165.00	20	40 60 80	
TOPSOIL		-								
Compact, reddish brown SILTY SAND with cobbles and boulders							- 164.00			
Compact, grey-brown SANDY SILT , some gravel		_					104.00			Ā
Loose, grey-brown coarse SAND with gravel <u>1.50</u>		G	12							
End of Test Pit										
(Groundwater infiltration at 1.3m depth)								20 Shea ▲ Undist	ar Strength (kPa)	00

patersongro		In	Con	sulting		SOI	l pro	FILE AI	ND TEST	DATA	
154 Colonnade Road South, Ottawa, Or		-		ineers	В	raeburn E Surnstown Surnstown	, Ontario)	Supply Road	d	
DATUM Ground surface elevation int Kasprzak Surveying Ltd.	erpola	ated fr	om to	pograph	_				FILE NO.	PH2610	
REMARKS BORINGS BY Backhoe				D۵	TF	March 10,	2015		HOLE NO.	TP 8	
	Ę		SAN	IPLE				Pen. R	esist. Blow	/s/0.3m	ч
SOIL DESCRIPTION	A PLOT		œ	RY	۲ ۲	DEPTH (m)	ELEV. (m)	• 5	i0 mm Dia. (Cone	meter ructio
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or ROD	1		• v	Vater Conte	ent %	Piezometer Construction
GROUND SURFACE	ß		Z	RE	z ^o		-149.00	20	40 60	80	
TOPSOIL 0.10 Compact, red-brown SILTY SAND with cobbles and boulders 1.30 End of Test Pit 1.30 Refusal on inferred boulders at 1.30m donth 1.30		G	13				- 149.00				
1.30m depth (TP dry upon completion)											
								20 Shea ▲ Undist	40 60 ar Strength turbed △ R		00

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value	
Very Soft	<12	<2	
Soft	12-25	2-4	
Firm	25-50	4-8	
Stiff	50-100	8-15	
Very Stiff	100-200	15-30	
Hard	>200	>30	

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

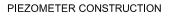
GRAIN SIZE DISTRIBUTION

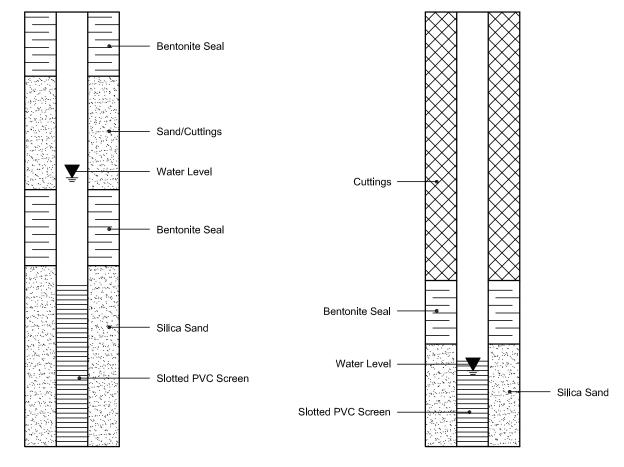
MC% LL PL PI	- - -	Natural moisture content or water content of sample, % Liquid Limit, % (water content above which soil behaves as a liquid) Plastic limit, % (water content above which soil behaves plastically) Plasticity index, % (difference between LL and PL)		
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size		
D10	-	Grain size at which 10% of the soil is finer (effective grain size)		
D60	-	Grain size at which 60% of the soil is finer		
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$		
Cu	-	Uniformity coefficient = D60 / D10		
Cc and Cu are used to assess the grading of sands and gravels:				

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth		
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample		
Ccr	-	Recompression index (in effect at pressures below p'c)		
Cc	-	Compression index (in effect at pressures above p'c)		
OC Ratio)	Overconsolidaton ratio = p'_c / p'_o		
Void Ratio		Initial sample void ratio = volume of voids / volume of solids		
Wo	-	Initial water content (at start of consolidation test)		


PERMEABILITY TEST


k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

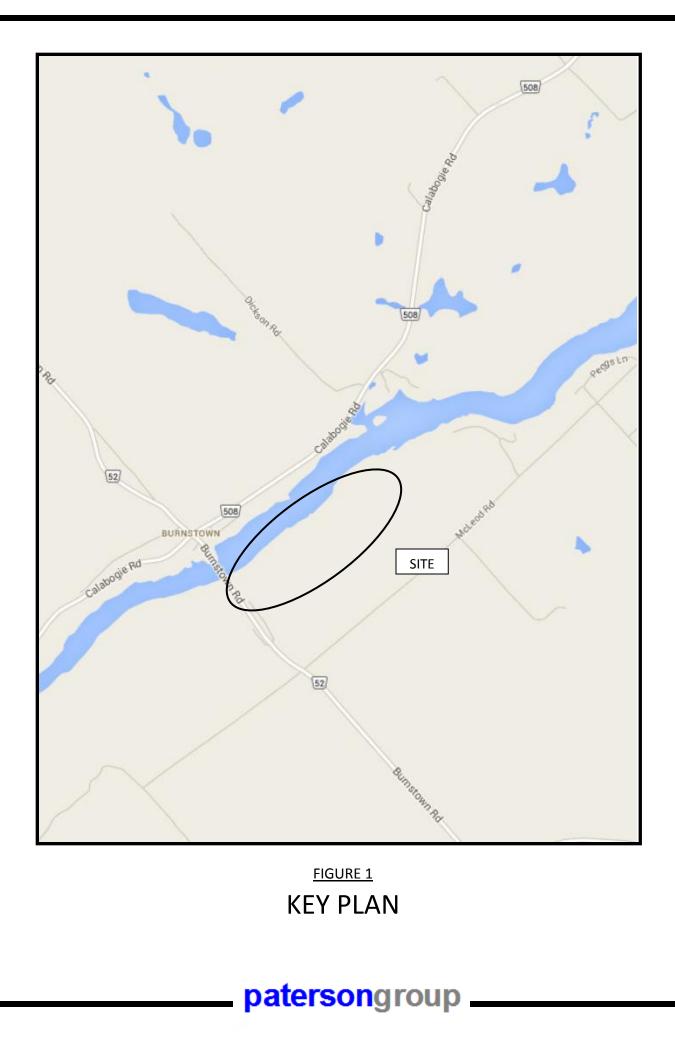
SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill ∇ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

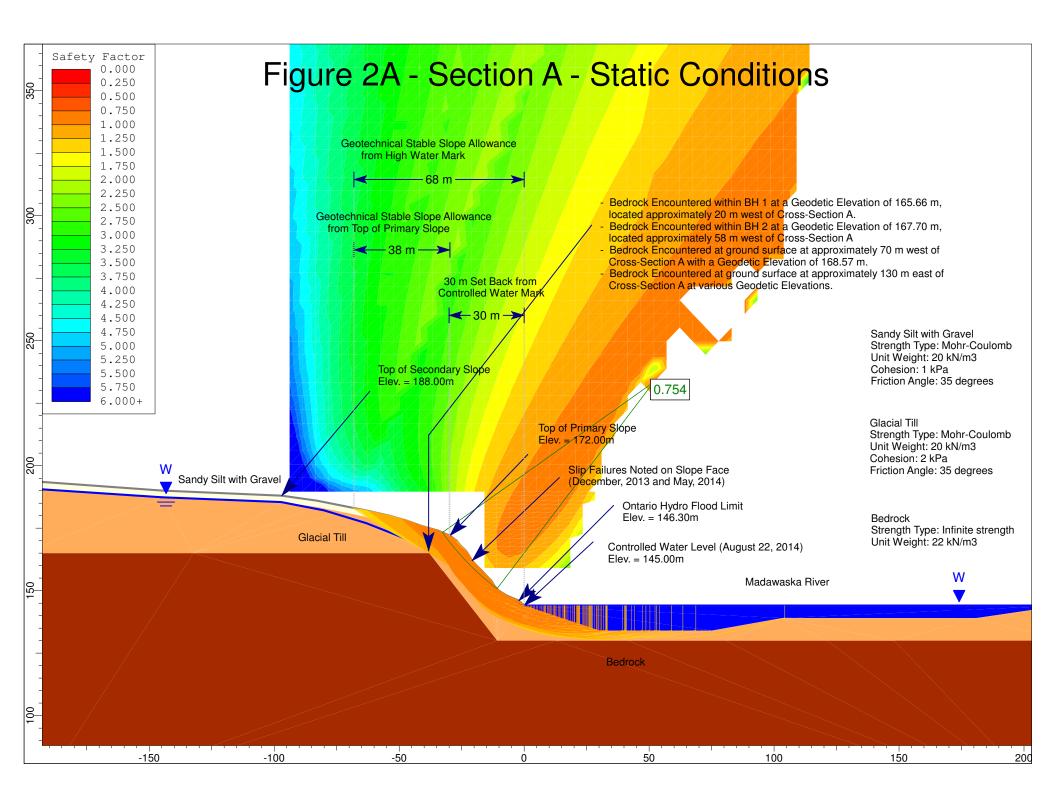
MONITORING WELL AND PIEZOMETER CONSTRUCTION

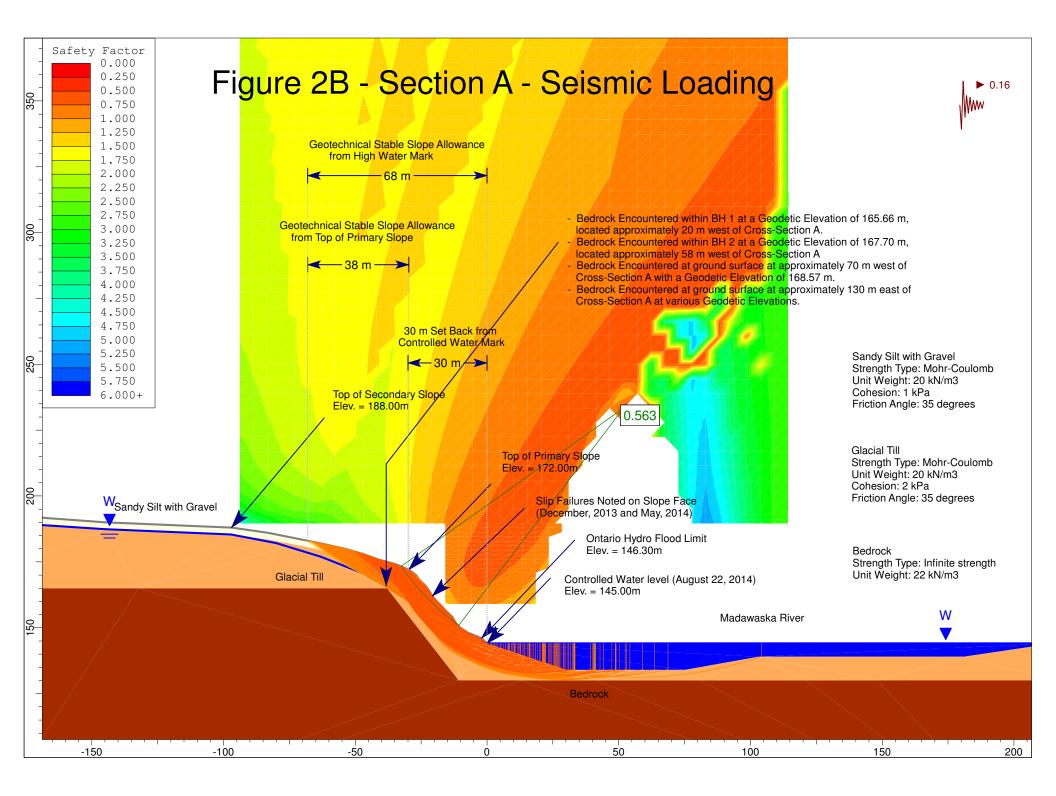
Photographs

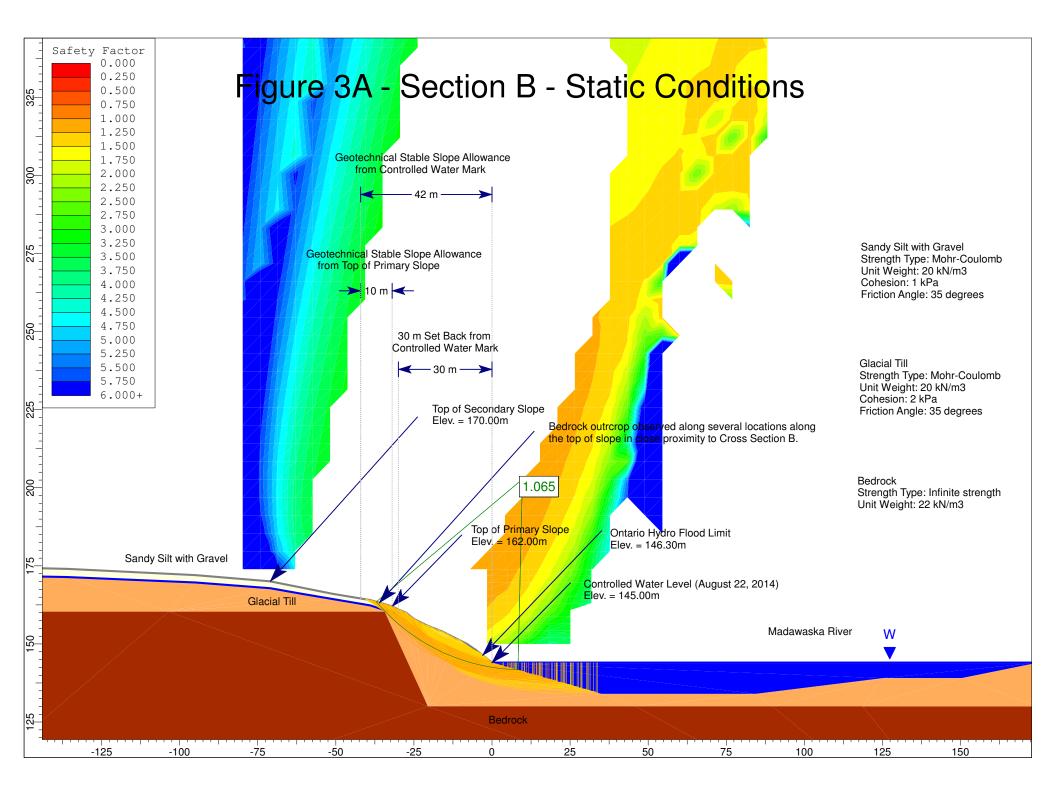
Photograph 1 - North limits of the subject site bordered by the Madawaska River.

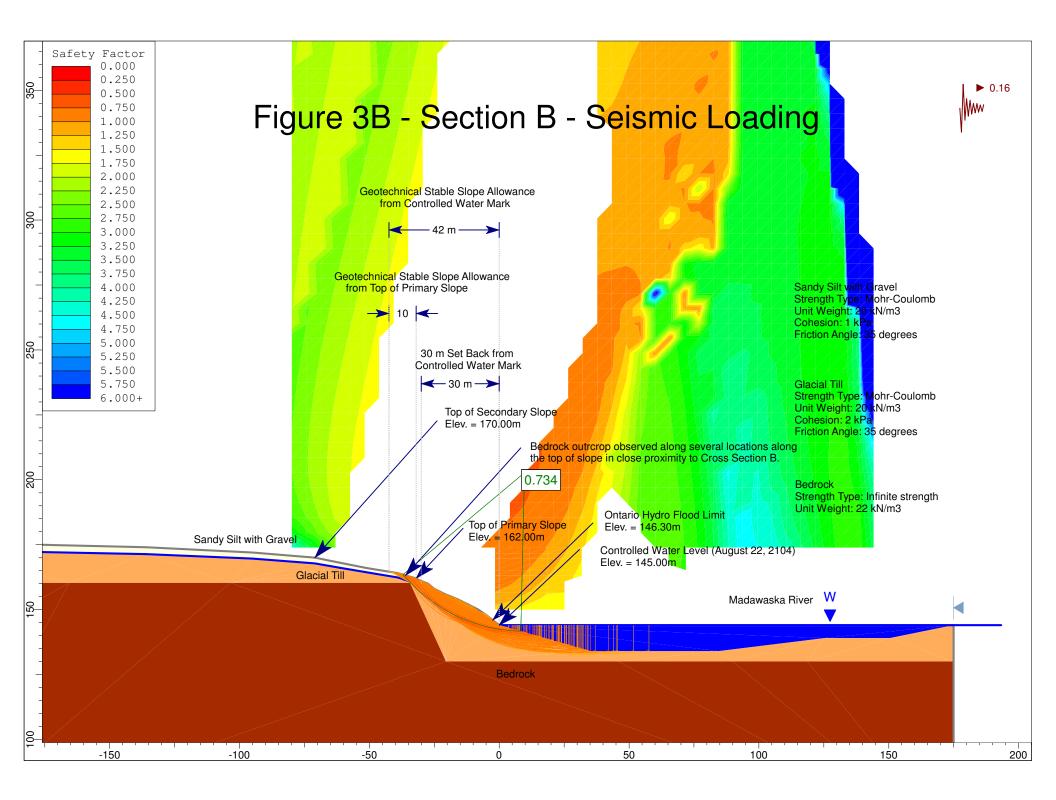
Photograph 2 – Illustrates the slip failures observed along the slope face near Slope Cross Section A.

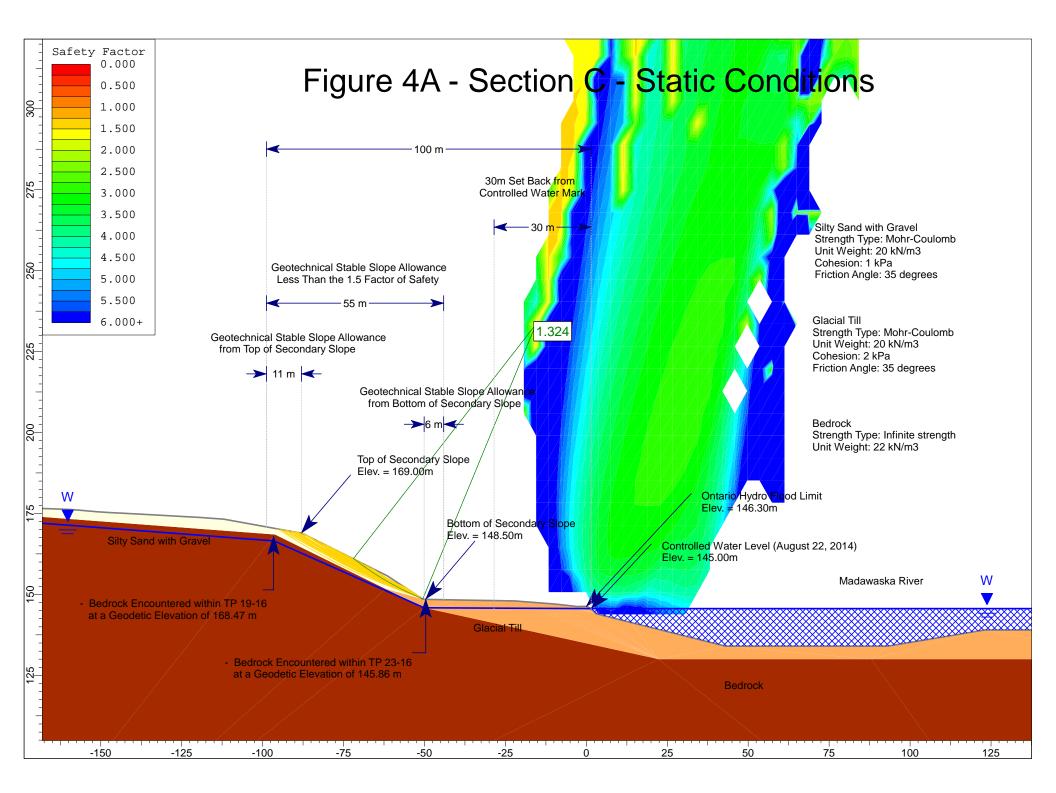

Photographs

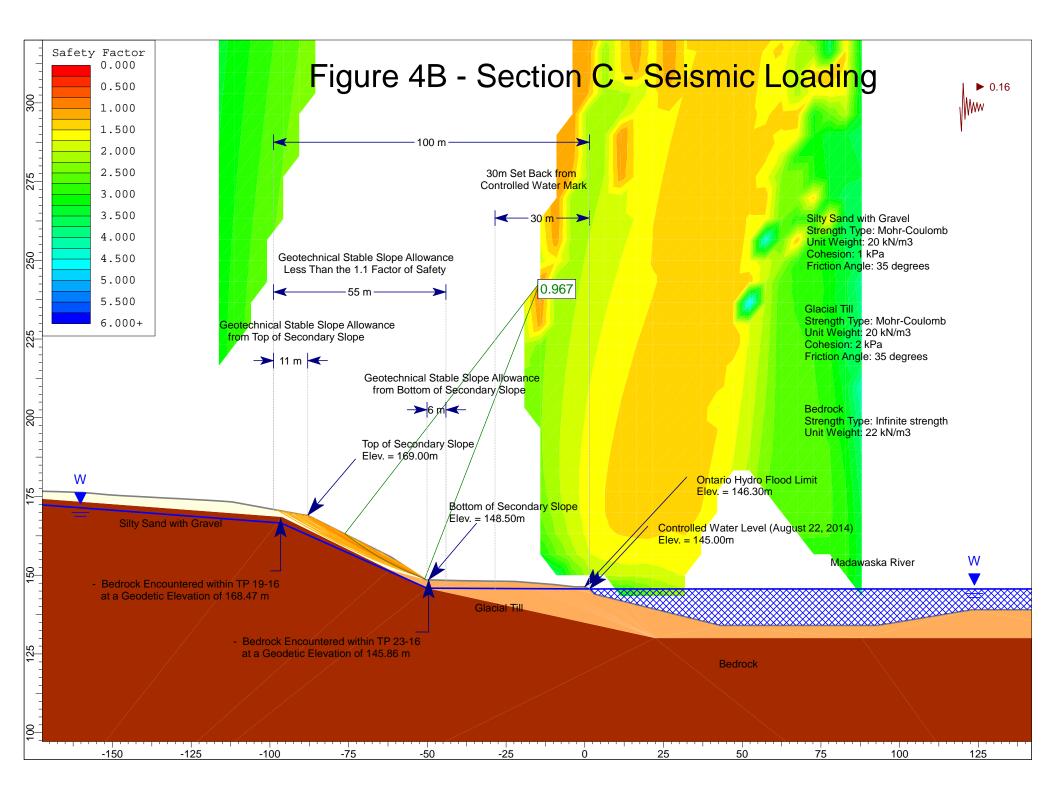


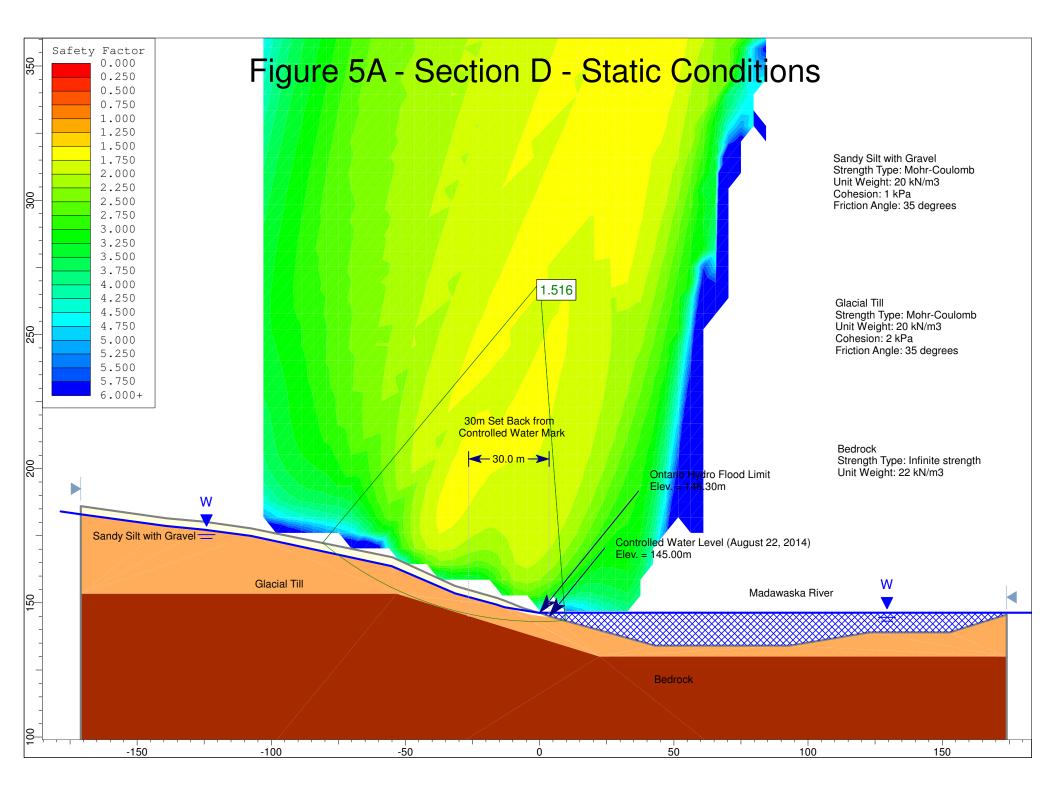

Photograph 3 – Exposed bedrock observed at several locations along the west and central portions of the subject slope

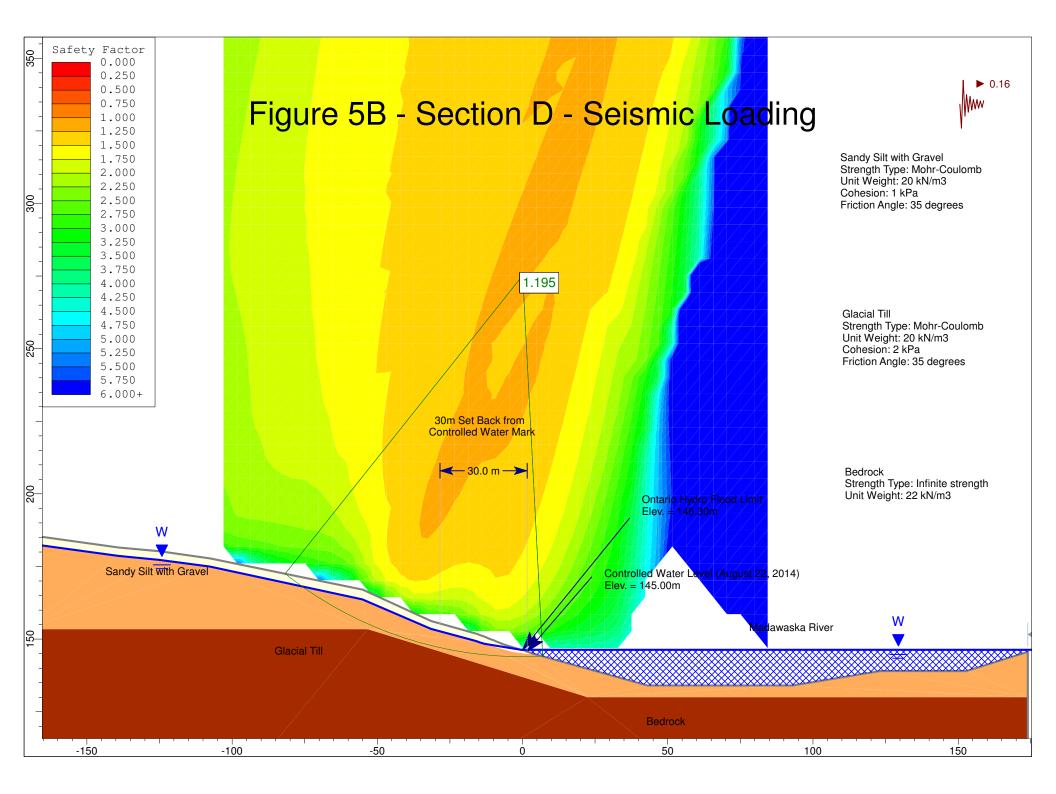

Photograph 4 – One (1) of three (3) shallow drainage streams located along the subject slope.

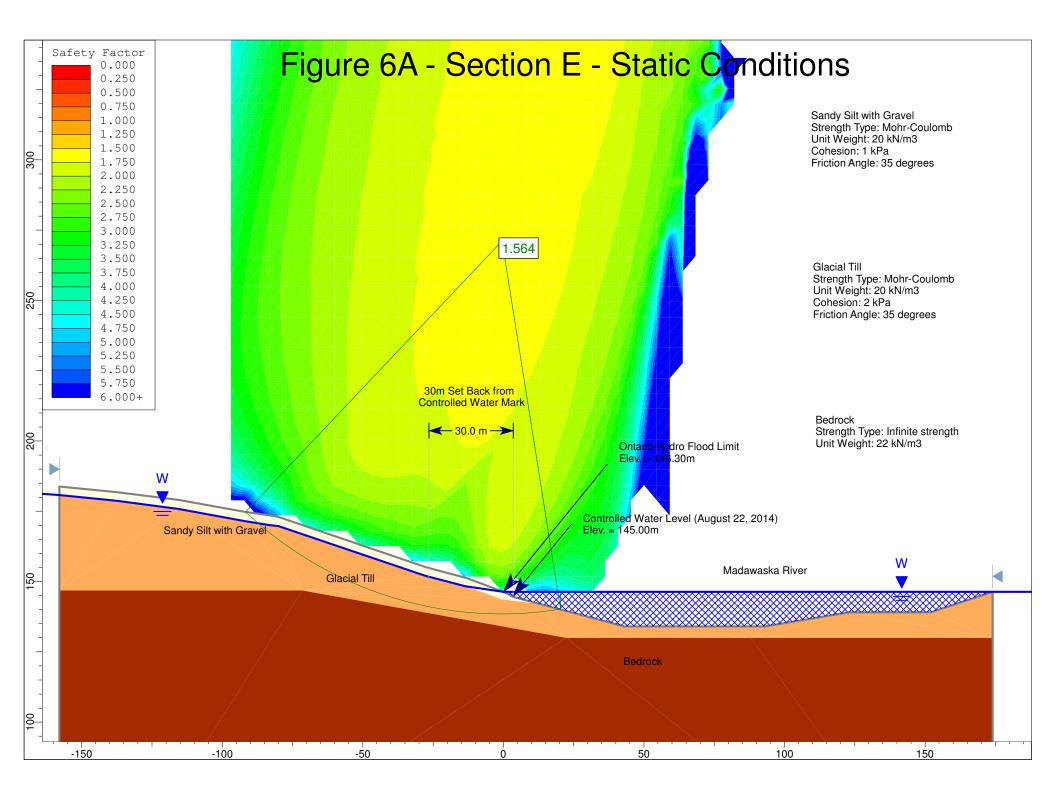


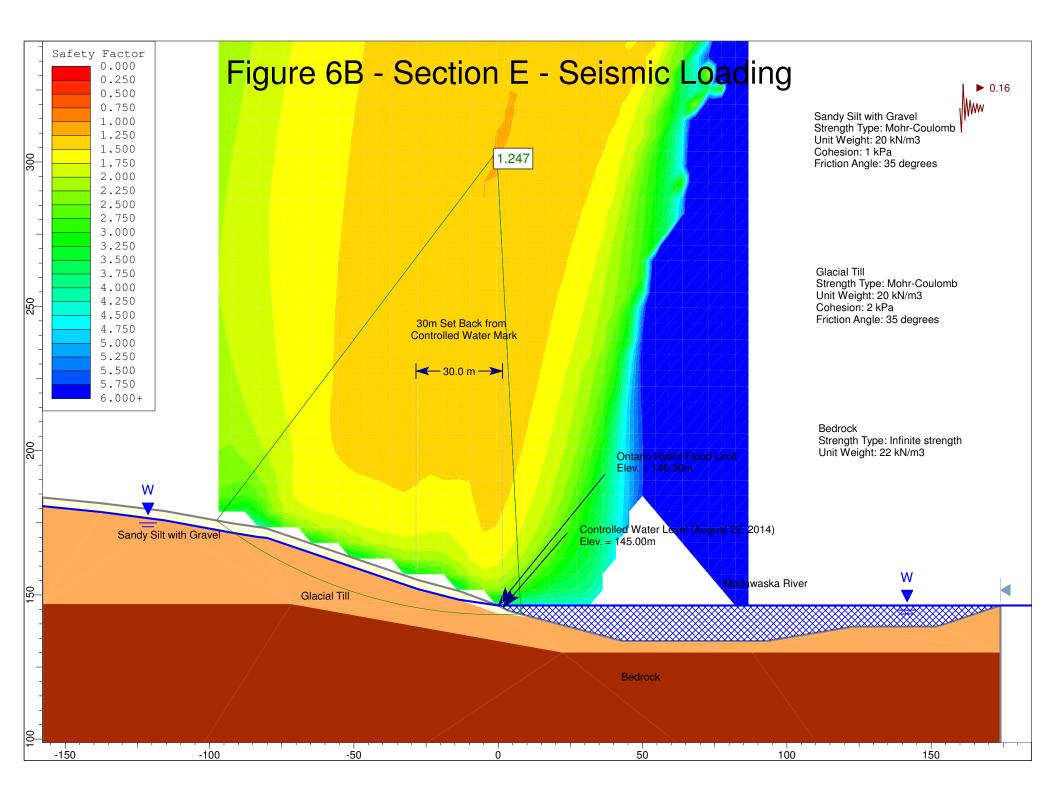


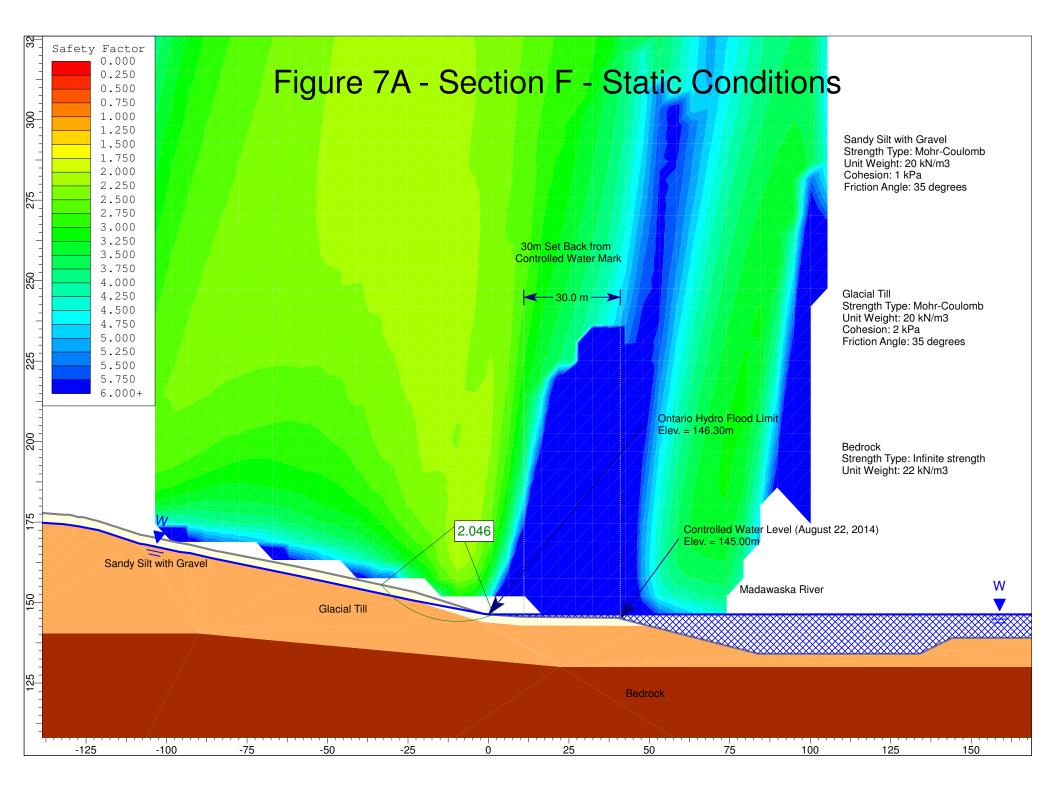


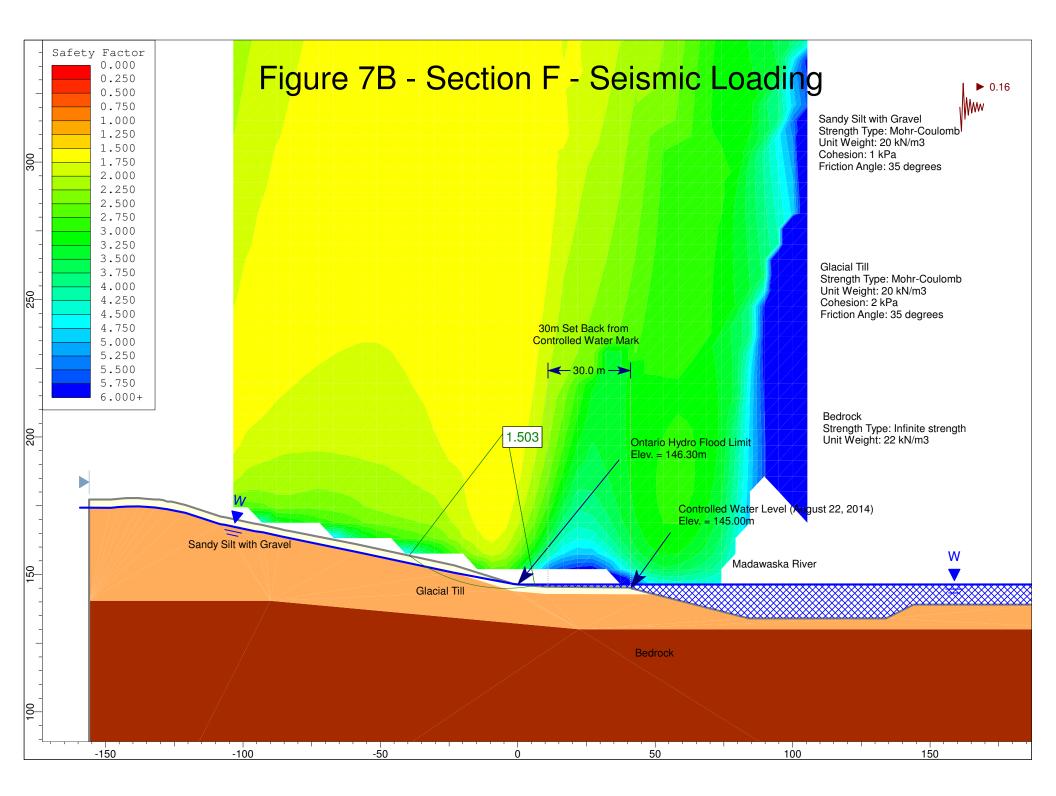


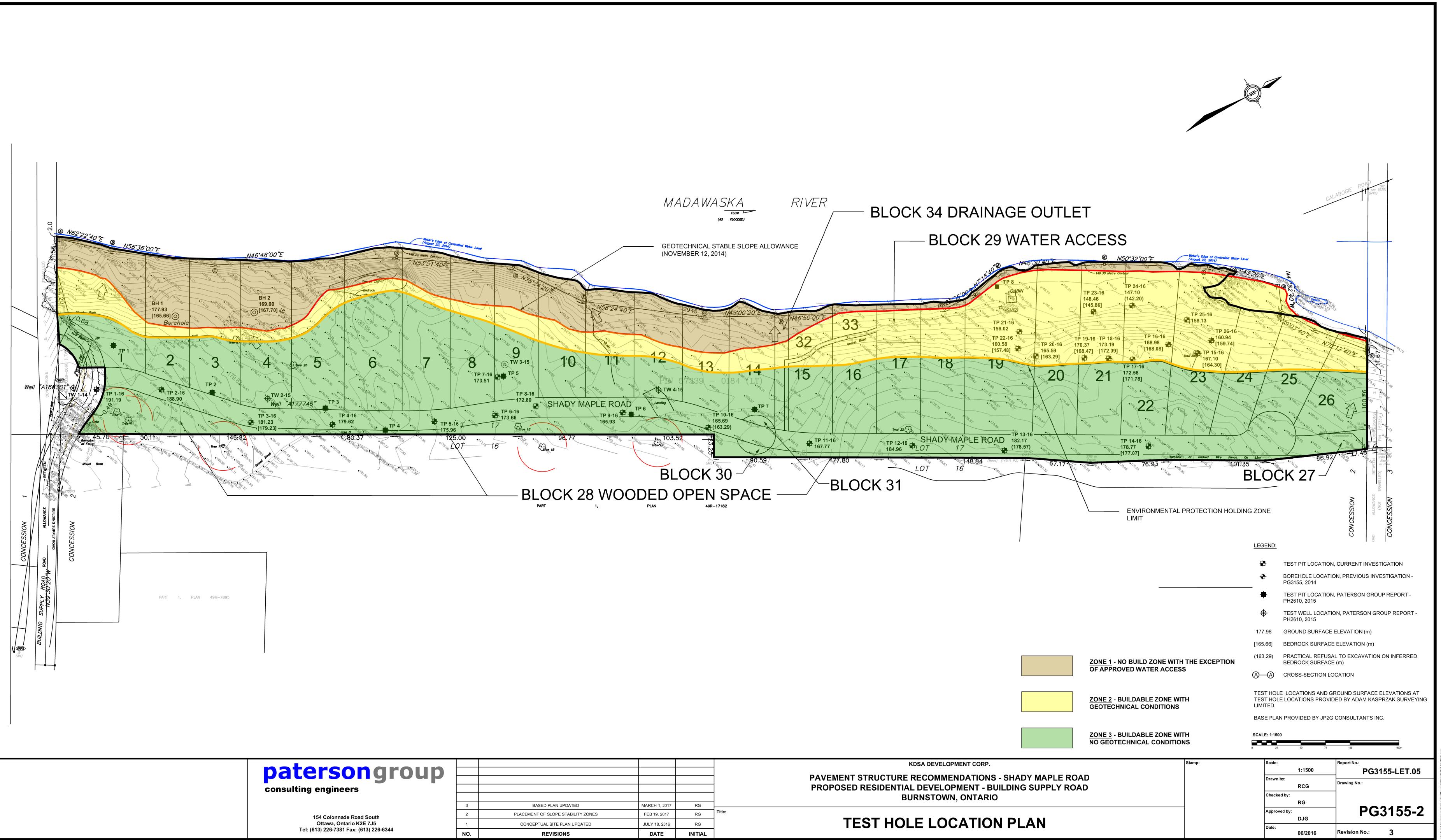












ıp					PAVEMENT STRUCTU
	3	BASED PLAN UPDATED	MARCH 1, 2017	RG	
	2	PLACEMENT OF SLOPE STABILITY ZONES	FEB 19, 2017	RG	Title:
	1	CONCEPTUAL SITE PLAN UPDATED	JULY 18, 2016	RG	TEST HO
	NO.	REVISIONS	DATE	INITIAL	